

1 Nematicidal indole oxazoles and chemoattractants from soil bacteria

2

3 Kaetlyn T Ryan^{1,*}, Julia M Duncan^{2,3,*}, Chris S Thomas^{2,4}, Marc G Chevrette^{2,7}, Martel L

4 DenHartog², Kristin J Labby⁵, Joanna Klein⁶, Mostafa Zamanian^{1†}, Jo Handelsman^{2,7†}

5 * These authors contributed equally to this article.

6 † Corresponding authors

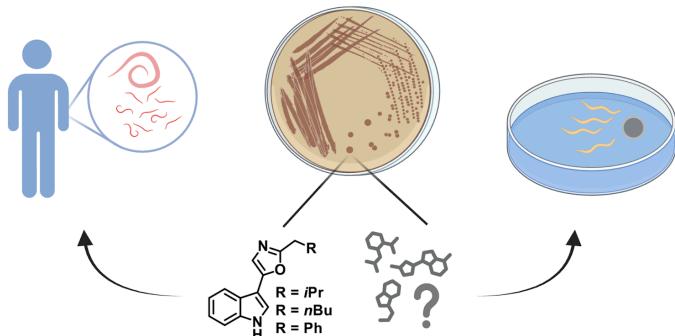
7 Mostafa Zamanian (mzamanian@wisc.edu)

8 Jo Handelsman (jo.handelsman@wisc.edu)

9

10 ¹Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison,
11 WI, USA

12 ²Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA


13 ³Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks,
14 AK, USA

15 ⁴Research and Development, Forensic Fluids Laboratory, Plymouth MN, USA

16 ⁵Department of Chemistry, Beloit College, Beloit, WI, USA

17 ⁶Department of Biology, University of St. Thomas, St. Paul, MN, USA

18 ⁷Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA

20

21 Abstract

22

23 Ecological interactions between bacteria and nematodes in many environments
24 provide a basis for the prediction that diverse bacteria produce anti-nematode
25 compounds. The discovery of microbial secondary metabolites with broad-spectrum
26 nematostatic or nematicidal properties can be hastened by drug screening approaches
27 that include several nematode species and phenotypes. We cultured a collection of 22
28 soil-derived bacterial isolates that carry in their genomes putative pathways for
29 production of unknown secondary metabolites. Isolates were cultured in various media
30 to enhance natural product diversity and yield, and we evaluated culture filtrates for
31 activity against two evolutionarily distinct nematode species: Clade V free-living

32 nematode *Caenorhabditis elegans* and Clade III mammalian parasitic nematodes in the
33 genus *Brugia*. Partitioned extracts from *Pseudomonas* sp. strain TE4607 stunted C.
34 *elegans* development and caused motility defects in both blood-circulating larval and
35 adult stages of *Brugia*. The primary active compound was identified as labradorin 1, an
36 indole with known antibacterial and anticancer properties that had not been previously
37 described as affecting nematodes. Notably, filtrates of *Pseudomonas* sp. TE4607
38 cultures attracted free-living nematodes in sensory assays, adding to evidence that
39 certain *Pseudomonas* species modulate the behavior of free-living nematodes. These
40 findings underscore the need to further explore the link between nematode sensory
41 responses and whole-organism effects of microbial metabolites, with potential
42 applications in anthelmintic discovery.

43

44 **Introduction**

45

46 Bacteria and nematodes are ubiquitous across diverse environments and can
47 engage in competitive or antagonistic interactions. Free-living nematodes participate in
48 complex interactions with bacteria and fungi, including predator-prey dynamics¹ and the
49 exchange of toxins²⁻⁴. Nematodes possess a remarkable repertoire of chemosensory
50 receptors⁵, and many microbes produce signals that influence nematode sensory
51 behaviors⁶. Previously characterized microbial cues include metabolites that facilitate
52 nematode food-seeking or pathogen avoidance⁷⁻⁹ and attractants used to entrap or
53 infect nematodes¹⁰⁻¹². These inter-kingdom dynamics have the potential to provide
54 evolutionary pressure for microbes to develop metabolites or other molecular machinery
55 with both nematicidal and sensory-modulating properties.

56

57 Bioactive compounds emerging from these microbe-nematode interactions hold
58 promise as pharmaceutical treatments for parasitic diseases and as biocontrol agents
59 targeting closely related free-living plant-parasitic nematodes. Ivermectin and
60 emodepside are examples of antiparasitic drugs derived from microbial natural
61 products^{13,14} that exhibit activity against nematode species spanning several clades,
62 owing to significant genomic conservation within the nematode phylum.

63

64 Parasitic nematodes infect billions of people, cause significant suffering in
65 companion animals, present zoonotic risks, and inflict major economic losses through
66 their impacts on livestock and crops¹⁵⁻¹⁷. For example, lymphatic filariasis, caused by
67 *Brugia malayi*, is a CDC-priority neglected tropical disease (NTD) and a target for global
68 elimination by the WHO. The need for novel treatments and therapies to address
69 nematode infections is urgent given existing and emerging resistance to antiparasitic
70 drugs in current use¹⁸⁻²⁰ and shifts in vector prevalence and agricultural conditions
71 caused by climate change. Despite the promise of microbial secondary metabolites as a

72 source of new nematicides or antiparasitics, efforts to strategically optimize and scale
73 screening methods face several challenges. Free-living nematodes offer a tractable and
74 scalable model in which to screen for bioactivity, but this activity does not reliably predict
75 efficacy against parasitic nematodes^{21–23}. Direct evaluation of anthelmintic potential
76 against parasitic nematodes is preferred, but such efforts are complicated by the need
77 to propagate the nematodes in vertebrate and invertebrate hosts²⁴. Moreover, the
78 possibility of rediscovering known antiparasitics adds significant investment risk to the
79 search for nematicidal natural products.

80

81 Here, we attempt to address some of these challenges by performing parallelized
82 screening of phylogenetically distant free-living nematodes (*Caenorhabditis elegans*,
83 Clade V) and mammalian parasitic nematodes (*Brugia* spp., Clade III). We focused on
84 accessible parasite life cycle stages of *Brugia*, which can serve as predictive proxies for
85 activity against medically relevant but lower-throughput stages in a two-tiered
86 approach²³. To enhance the chance of discovery of new compounds, we tested bacterial
87 isolates that were prioritized based on genomic analysis for unusual biosynthetic
88 capacities and grown in diverse culture media. We evaluated several phenotypic
89 endpoints relating to nematode development, motility, tissue toxicity, and sensory
90 responses. A deeper understanding of how nematodes detect and respond to microbial
91 cues may reveal novel lead compounds and inform future strategies for nematicide and
92 anthelmintic discovery.

93

94 **Results and Discussion**

95

96 Identification of bacterial isolates with nematicidal and anthelmintic activity

97

98 A large library of bacterial isolates was generated from soil samples collected
99 from a variety of locations in Wisconsin, Illinois, and Minnesota. The bacterial isolates
100 were screened by students for antibacterial activity and then included in the Tiny Earth
101 collection²⁵. Twenty-two isolates were prioritized based on antiSMASH sequence
102 analysis indicating that they likely had unstudied biosynthetic gene clusters predicted to
103 be responsible for synthesis of bioactive small molecules. Bacterial genera represented
104 in this diverse collection included *Pseudomonas*, *Flavobacterium*, *Paraburkholderia*,
105 *Curtobacterium*, *Streptomyces*, *Paenarthrobacter*, *Providencia*, *Bacillus*, *Arthrobacter*,
106 and *Paenibacillus*. We performed primary screens of culture supernatant filtrates for
107 each isolate grown in four media (M9, PDB, LB, and TSB10) to broaden the range of
108 secreted natural products²⁶.

109

110 These filtrates were first screened against model nematode *C. elegans* (Clade
111 V) and parasitic *Brugia* microfilariae using three phenotypic endpoints: development,

112 motility, and tissue toxicity²³ (**Figure 1A**). In these high-content imaging assays, four
113 technical replicates (i.e., populations in a microtiter plate well) were performed for each
114 isolate, and phenotypes were quantified and normalized using image-processing
115 software²⁷. The measurements collected from these analyses include worm size as a
116 proxy for *C. elegans* development, optical flow to quantify parasite motility, green
117 fluorescence (RFU) as an indicator for tissue toxicity and reductions in parasite viability,
118 and progeny quantity to describe fecundity. The positive control in the development
119 assay was 50 µM albendazole sulfoxide, which restricts larval development to the L2
120 phase. The positive control for parasite assays was heat killing, which abolishes motility
121 and generates the maximum achievable tissue toxicity fluorescence value for a given
122 well. In this initial screen, filtrates that elicited phenotypes most similar to positive
123 controls were selected for further analysis.

124

125 Of the 88 filtrates tested, only those from *Flavobacterium* sp. TE3587 grown in
126 PDB media inhibited the growth of *C. elegans* larvae at or beyond the level of positive
127 controls (**Figure 1B**). The absence of other positive hits may be due to low
128 concentrations of active compounds in the unconcentrated filtrate, the stringency of the
129 required activity level, or the low permeability of the *C. elegans* cuticle^{28,29}. The
130 *Flavobacterium* sp. TE3587 genome contains several lanthipeptide biosynthetic gene
131 clusters that could be responsible for this activity. However, this isolate was deprioritized
132 due to lack of broad-spectrum activity, as these filtrates did not cause *Brugia*
133 microfilariae motility defects or tissue toxicity (**Figure 1C**).

134

135 *Brugia* microfilariae screens revealed two additional isolates that reduced motility
136 and caused tissue toxicity: *Pseudomonas* sp. TE4607 grown in PDB and TSB10 and
137 *Pseudomonas viciae* TECH7 grown in M9. These results were replicated across two
138 batches of parasites reared separately. The origin of each of these strains is described
139 in methods. Next, we evaluated the effects of these active isolates on *Brugia* adult
140 parasite motility and fecundity using filtrates derived from the specific growth conditions
141 in which they had shown activity in microfilariae (**Figure 1D**). Filtrates of *Pseudomonas*
142 *viciae* TECH7 significantly reduced adult female motility when the bacteria were grown
143 in M9 and reduced adult male motility when the bacteria were grown in any of the four
144 media. Filtrates from *Pseudomonas viciae* TECH7 (M9 media) and *Pseudomonas* sp.
145 TE4607 (TSB10 media), but not *Pseudomonas* sp. TE4607 (PDB media) reduced adult
146 female fecundity. The distinct phenotypic profiles across bacterial growth conditions
147 suggests that media type significantly influences metabolite production profiles³⁰,
148 supporting the relevance of frameworks like One Strain Many Compounds (OSMAC)^{31,32}
149 in nematode screening.

150

151 *Pseudomonas* sp. TE4607 was prioritized for follow-up because of its potent
152 effects against *Brugia* microfilariae stage parasites. TSB10 was chosen for culturing
153 because it supported higher activity in the fecundity assay than other media. Effects on
154 *C. elegans* development might be detected with preparations of higher purity, but the
155 results presented here highlight the importance of considering several phenotypic
156 assays in primary screens.

157

158 Labradorin 1 (1) is the primary active compound in *Pseudomonas* sp. TE4607

159

160 Crude extracts from two liters of *Pseudomonas* sp. TE4607 (TSB10) culture were
161 generated by methanol extraction and then partitioned into four solvent phases:
162 chloroform, hexane, n-butanol, and aqueous. These partitions were concentrated to
163 dryness and resuspended in DMSO for screening in the same *C. elegans* and *Brugia*
164 microfilariae assays at a range of concentrations (20 µg/ml - 1 mg/mL, **Figure 2A**).
165 There were low-level activities in all partitions except for the aqueous phase in all three
166 assays (development, motility, and tissue toxicity), but the most potent phenotypes
167 appeared in the hexane partition. HPLC-generated fractions of the three active
168 partitions were screened in the same assays at a final concentration of 100 µg/ml
169 (**Figure 2B**). In these screens, two fractions of the hexane partition were the most
170 active, causing modest reduction in *C. elegans* development and severe reduction in
171 microfilariae motility accompanied by tissue death. These effects were not observed
172 when fractions were screened at 10 µg/ml (data not shown).

173

174 The chemical structures of active fractions were elucidated using ¹H, ¹³C NMR,
175 and LCMS (see SI). Compound 1 (Labradorin 1, **Figure 3**) was the only detectable
176 compound in the most active fraction. The second most active fraction contained a
177 mixture of labradorin 1 and pimprinaphine (**Figure 3**). We infer that the lower activity
178 was due to lower abundance of labradorin 1; fractions containing only pimprinaphine
179 were not active at the concentrations tested. Labradorin 1 has previously been isolated
180 from several *Pseudomonas* species³³⁻³⁵, and the biosynthetic pathway for synthesis of
181 indolyloxazole alkaloids in this genus has similarly been established³⁶. LCMS analysis
182 revealed the previously proposed biosynthetic intermediates (see SI). Labradorin 1 has
183 been reported to be active against certain cancer cell lines³³ and some species of
184 bacteria^{34,35}, but this is the first report of its nematicidal activity. Several derivatives and
185 analogs in the pimprinaphine family were previously reported to be nematicidal³⁷.

186

187 Extracts from *Pseudomonas viciae* TECH7 grown in M9 had the same profile of
188 activities as TECH4706 grown in TSB10 (see SI). LCMS data indicated the most active
189 compound isolated from the hexane partition was consistent with oleamide (3) (**Figure**
190 **3**), alongside trace components of pimprinaphine (2). LCMS data identified labradorin 1

191 (1) within a mixed-compound fraction that did not exhibit activity, suggesting that other
192 co-occurring compounds may contribute to effects of strain TECH7 on nematodes.

193

194 Labradorin 1 (1) was purified from *Pseudomonas* sp. TE4607 culture, and
195 dose-response curves were generated for *Brugia* microfilariae motility (**Figure 4A**) and
196 *C. elegans* development (**Figure 4B**). This resulted in EC50 values of 12.6 µg/ml (52.4
197 µM) for microfilariae motility and 17.4 µg/ml (72.4 µM) for *C. elegans* development.
198 Labradorin 1 inhibited adult motility at concentrations of 50 µg/ml and above (**Figure**
199 **4C**), but did not have a significant effect on adult female fecundity (**Figure 4D**). To
200 determine whether labradorin 1 was toxic to mammalian cells, we tested it on cell line
201 HEK293T, and it was toxic at concentrations near the microfilariae EC50 value (**Figure**
202 **4E**). Mammalian toxicity at this level would limit labradorin's utility as a monotherapy to
203 treat parasitic nematodes without either chemical modification or a delivery system that
204 reduces host toxicity.

205

206 Nematode chemoattraction to labradorin 1-producing *Pseudomonas* sp. TE4607

207

208 Given the deleterious effects of labradorin 1 on free-living nematodes, we were
209 interested in potential behavioral interactions between these worms and the bacterial
210 strains that produce the compound. Soil nematodes can exhibit chemosensory
211 behaviors in response to metabolites produced by both beneficial and deleterious
212 microbes³⁸. For example, the nematode pathogen *Pseudomonas aeruginosa* produces
213 chemoattractants that enable it to infect nematodes¹⁰. To investigate whether
214 *Pseudomonas* sp. TE4607 modulates sensory responses in *C. elegans*, we used
215 chemotaxis assays to measure nematode attraction to TE4607 supernatant filtrate and
216 purified labradorin 1. In this choice assay (**Figure 5A**), worms were placed in the center
217 of agar plates flanked by test cues and water controls, and the number of worms in
218 each zone was determined over time (1, 2, and 24 hr). This assay was conducted using
219 both an agar-plug soaking method³⁹ and a direct application method⁴⁰ to establish
220 chemical gradients.

221

222 Using the agar plug method, we observed strong *C. elegans* attraction towards
223 *Pseudomonas* sp. TE4607 filtrate with most worms accumulating at this cue over the
224 24-hour observation period. This sensory response is not driven by TSB10 media alone
225 (**Figure 5B**). Next, we used the direct application method, which requires smaller
226 quantities of test cues, to determine whether nematode chemoattraction to
227 *Pseudomonas* sp. TE4607 is decoupled from the filtrate nematicidal activity. The
228 nematodes accumulated around the TE4607 filtrate but populations declined around
229 labradorin 1 over 24 hr, indicating that chemoattraction to TE4607 is independent of
230 labradorin 1 (**Figure 5C**). The transient attraction of worms to labradorin 1 at the earliest

231 time points is explained by the known attraction of *C. elegans* to the solvent, DMSO⁴¹ in
232 which labradorin was dissolved. Pyoverdin-like compounds might be responsible for
233 chemoattraction because the TE4607 genome contains biosynthetic gene clusters that
234 resemble those of the pyoverdins, which are a known class of *C. elegans*
235 chemoattractants⁴². *Pseudomonas* sp. TE4607 and nematodes have complex chemical
236 interactions, which make the vast pool of soil *Pseudomonas* species a continuously
237 attractive resource for nematicidal compounds for human therapeutics and potential
238 biocontrol agents for plant-parasitic nematodes.

239 **Experimental Section**

240

241 Nematode sources and husbandry

242

243 *C. elegans* N2 (Bristol) was maintained on NGM plates seeded with *E. coli* OP50 at
244 20°C. *Brugia* microfilariae and adult parasites were obtained through the NIH/NIAID
245 Filariasis Research Reagent Resource Center (FR3); morphological voucher specimens
246 are stored at the Harold W. Manter Museum at the University of Nebraska, accession
247 numbers P2021-2032⁴³. *Brugia pahangi* and *Brugia malayi* species were used
248 interchangeably according to availability at the time of screening and maintained in
249 RPMI 1640 culture media with penicillin/streptomycin (0.1 mg/ml) at 37°C with 5%
250 atmospheric CO₂.

251 Media and solvents used in this study

252 Reagent- HPLC-, or LCMS-grade methanol, hexanes, chloroform, *n*-butanol, and
253 acetonitrile were purchased from Fisher Scientific and used as received. Formic acid,
254 trifluoroacetic acid, d4-methanol with TMS internal standard, and HP-20 resin were
255 purchased from Sigma Aldrich and used as received. Tryptic Soy Broth was prepared at
256 1/10th of the manufacturer's recommended concentration (TSB10), and Luria-Bertani
257 (LB) and Potato Dextrose Broth (PDB) (BD BactoTM) were prepared according to
258 manufacturer instructions. M9 medium was prepared as follows. A salt stock solution
259 was prepared from anhydrous Na₂HPO₄ (33.9 g), KH₂PO₄ (15 g), NaCl (2.5 g), and
260 NH₄Cl (5 g) in 1 L MilliQ water. Salt stock solution (200 mL) was added to 700 mL MilliQ
261 water and autoclaved. Once the solution had cooled to room temperature, sterile 1 M
262 MgSO₄ (1 mL), 20% m/v glucose (20 mL), and 1 M CaCl₂ (100 mL) were added per liter
263 of culture broth and the final volume adjusted to 1 L.

264 Isolate collection and filtrate preparation

265

266 A single colony from solid media of each of the 22 bacterial strains was used to
267 inoculate four different media: LB, TSB10, M9 and PDB. Cultures were shaken at 28°C
268 at 200 rpm for up to four days. When cultures were turbid (or at 4 days if not turbid), 1
269 mL was removed from each and stored at -20°C. Cells and debris were removed from
270 the remaining culture by centrifugation, and the resulting supernatant was filtered
271 through a 0.2-μm filter and frozen until use.

272

273 Isolate species was first determined by the IMG annotation pipeline⁴⁴ (NCBI tax id:
274 d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Pseudomonadales;
275 f_Pseudomonadaceae; g_Pseudomonas; s_Pseudomonas_hunanensis) and later
276 classified by GTDB-tk⁴⁵ (d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria;

277 o_Pseudomonadales; f_Pseudomonadaceae; g_Pseudomonas_E;
278 s_Pseudomonas_E sp024749165). *Pseudomonas* sp. TE4607 was isolated by
279 students at Beloit College from a soil sample taken in Beloit, Wisconsin. *Pseudomonas*
280 *viciae* TECH7 was isolated by students at the University of Northwestern, St. Paul from
281 a soil sample taken in Maplewood, Minnesota.

282

283 Extract, partition, and fraction preparation

284

285 **Pseudomonas** sp. TE4607 **culture and chemical isolation conditions.** A three-way
286 streak plate was prepared on LBA from a glycerol stock stored at -80°C and incubated
287 at 28°C for two days. Sterile LB broth (5 mL) was inoculated with a single colony and
288 incubated overnight at 28°C. TSB10 (2x1 L) was inoculated with overnight culture (1
289 mL/L) and the broth incubated at 28°C in a shaking incubator at 200 RPM for 24 hours.
290 Pre-activated HP-20 resin (70 g/L) was added and the broth culture shaken for an
291 additional hour. The resin was collected by filtration through miracloth and washed with
292 water (3x500 mL), transferred to a large beaker, and extracted with methanol for one
293 hour in triplicate (3x300 mL). The combined extracts were concentrated under reduced
294 pressure to gain the crude extract. The crude extract was resuspended in 10%
295 MeOH/H₂O (200 mL) with sonication, and sequentially partitioned into hexanes (3x50
296 mL), chloroform (3x50 mL), and *n*-butanol (3x50 mL). The initial partitioning into
297 hexanes often produced an emulsion, which was dispersed using a minimal amount of
298 brine. Each organic layer was washed with water (2x20 mL) and brine (20 mL), dried
299 over Na₂SO₄, filtered, and concentrated under reduced pressure. The partitioned
300 extracts were resuspended in methanol, filtered through a 0.2 mm PTFE filter, and the
301 solvent removed. The hexanes and chloroform partitions were subjected to
302 chromatographic separation by reverse phase HPLC. HPLC analyses were performed
303 on a Shimadzu Nexera Series with a PDA and ELSD detector. A Phenomenex™ Luna 5
304 mm C18 column with dimensions of either 4.6x250 mm or 10x250 mm was used for
305 analytical and semi-prep scale separations, respectively. HPLC chromatograms were
306 processed using LabSolutions software. ¹H and ¹³C NMR spectra were measured on a
307 Bruker Avance-500 equipped with a DCH cryoprobe or a Bruker Avance-400 equipped
308 with a BBFO probe. NMR spectra were processed using MestraNova software. All
309 chemical shifts are reported in units of parts per million (ppm) downfield from
310 tetramethylsilane (TMS) and coupling constants are reported in units of hertz (Hz). High
311 resolution mass spectra were measured on a Thermo Q Exactive Plus™ using
312 electrospray ionization in tandem with a Vanquish VH-P10 LC system equipped with a
313 Phenomenex™ kinetex 1.7 mm C18 column with dimensions of 2.1x100 mm. LCMS
314 spectra were processed using FreeStyle software. Compound Discoverer (version 2.0,
315 Thermo Fisher) was used for assigning known compounds with documented mass
316 spectra and cross checked using Natural Products Atlas and SciFinder where possible.

317 Purification by HPLC (10-90% or 10-30-70% MeCN/H₂O with 0.1% TFA over 30 min;
318 4.7 ml/min) provided several purified compounds and characterization data are
319 described in supplemental materials.

320 *Pseudomonas viciae* TECH7 was cultured similarly to *Pseudomonas* sp. TE4607 in M9
321 broth and TSB10, respectively. Chemical extraction and purification followed the same
322 procedure as described above.

323

324 Nematode screening protocols

325

326 Isolate and extract samples were stored at -20°C and thawed, diluted, and aliquoted to
327 empty 96-well assay plates (Greiner Bio-One 655180) immediately prior to assay setup.

328 Filtrate samples were added to plates in volumes of 10 µl per well (1:10 dilution). Extract
329 samples were stored dry and diluted using DMSO to 100X tested concentrations based
330 on extract or fraction weight. Resuspended samples were added to plates in volumes of
331 1µl per well (1:100 dilution). Media alone was used as a negative control in place of
332 DMSO for filtrates. Nematodes were prepared according to species and assay as

333 follows. ***C. elegans* development:** approximately 18 hours prior to development
334 screening, gravid worms were synchronized via bleaching⁴⁶, and embryos were hatched
335 in filter-sterilized K media⁴⁷. Titering of larvae, preparation of food mixture, and set up
336 and incubation of 96-well assay plates were performed as previously described²³. After
337 48 hours, assay plates were rinsed with M9 using an AquaMax 2000 plate washer
338 (Molecular Devices), and sodium azide (Thermo Scientific) was added at a final
339 concentration of 50mM to paralyze worms. Whole wells were imaged with a 2X

340 objective using an ImageXpress Nano (Molecular Devices), and images were analyzed
341 using the worm size module of wrmXpress v1.4.0²⁷. ***Brugia microfilariae*:** motility and
342 tissue toxicity assays using CellTox Green (Promega) were performed as previously
343 described⁴⁸. Images were acquired using a 4X objective on an ImageXpress Nano and
344 analyzed using the motility and cell toxicity modules of wrmXpress²⁷. ***Brugia adult***

345 ***parasite*:** motility and fecundity assays were set up as described⁴⁹ with minor
346 modifications. Parasites were transferred between plates after the 0-hour and 48-hour
347 time points. Motility videos were cropped using Fiji⁵⁰ and analyzed using optical flow²³.
348 Fecundity images were stitched and segmented using a previously developed Fiji
349 protocol⁴⁹. All endpoints were normalized and analyzed using R software including
350 tidyverse packages⁵¹ for statistical analysis and the drc package⁵² for dose-response
351 analyses. *C. elegans* and microfilariae phenotypes were normalized as follows: (X -
352 positive control) / (negative control - positive control) where X is the phenotypic endpoint
353 while adult parasite data points were normalized to DMSO and media controls alone: X /
354 negative control after normalizing to individual initial motility scores.

355

356 Cell Line Toxicity Screening

357

358 HEK293T cells were cultured in DMEM high glucose + GLUTAMAX + pyruvate (Life
359 technologies, 10569010) supplemented with 10% FBS (Fisher A52567) and
360 penicillin-streptomycin (Cytiva SV30010) at 100 U/mL and 100 µg/mL, respectively. For
361 maintenance, cells were split when 80% confluence was reached and passed at a split
362 ratio between 1:5 and 1:10. Briefly, cells were washed with DPBS without calcium or
363 magnesium (Gibco, 14190144), trypsinized with 0.05% trypsin-EDTA (Gibco,
364 25300054), resuspended in culture media, and passed to a T25 flask with fresh culture
365 media. For toxicity assay set up, cells were plated in culture media with dialyzed FBS
366 (Cytiva, SH30079.02) in white, opaque plates (Greiner Bio-One, 07-000-138) 48 hours
367 in advance of drug application. Cells were plated at a concentration that yielded 80%
368 confluence the day of the assay. Some wells contained media with no cells as controls
369 and to cell wells, DMSO or labradorin-1 was added at a 1:100 dilution. After 24 hours,
370 plates and CellTiter-Glo Luminescent Cell Viability Assay (Promega) reagent were
371 equilibrated to room temperature before the reagent was added to wells according to
372 label instructions. Plates were then left at room temperature and protected from light
373 exposure for 10 minutes prior to using a SpectraMax Plate Reader (Molecular Devices)
374 to read luminescence values using an integration time of 750ms. Luminescence data
375 was analyzed using R software and normalized to DMSO controls.

376

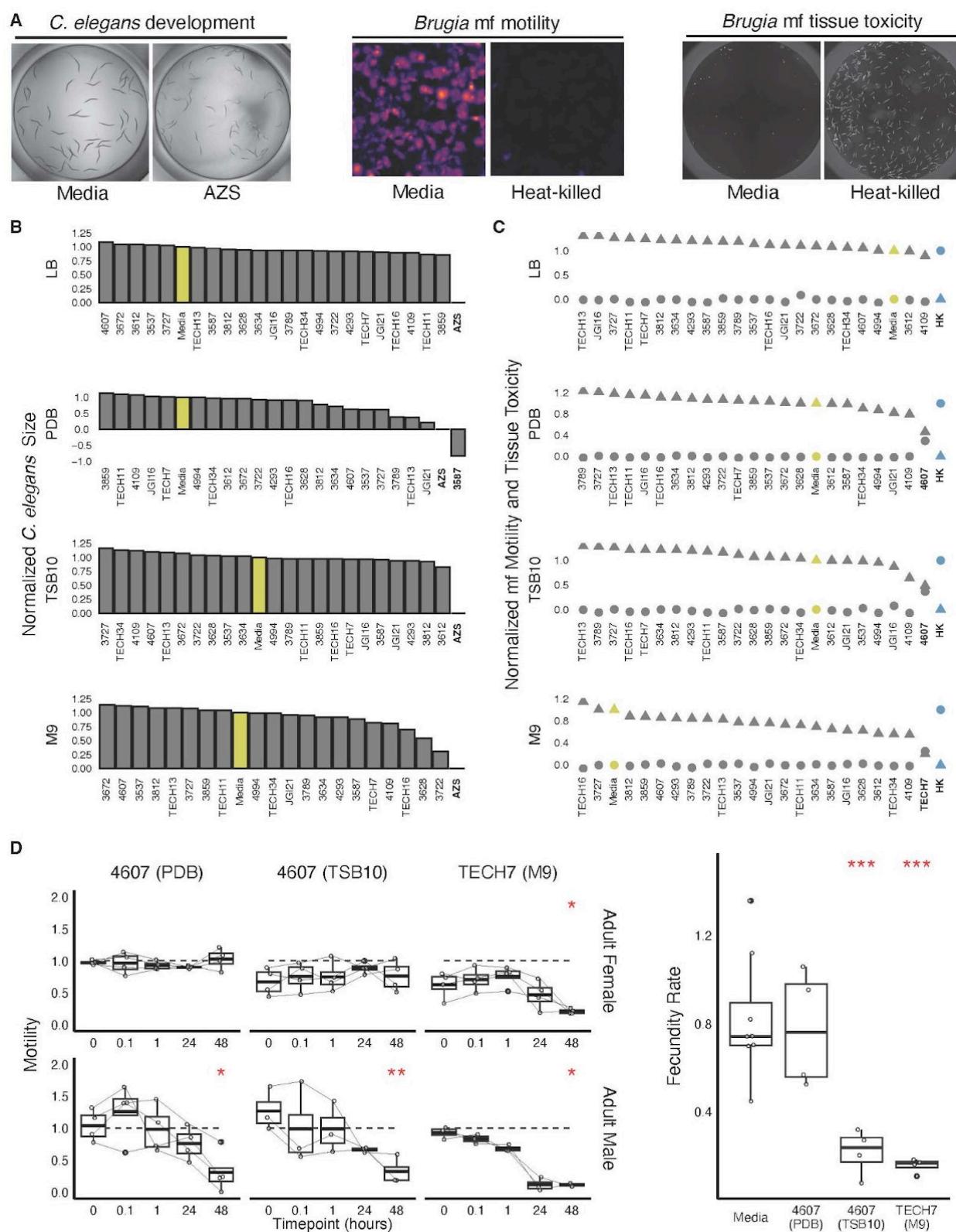
377 *C. elegans* chemosensory assay

378

379 Chemotaxis agar media⁵³ was prepared (2.5% agar, 1mM CaCl₂, 5mM KHPO₄, 1mM
380 MgSO₄) and poured into 10 cm petri dishes. Plate markings were drawn based on
381 previous chemotaxis screens performed for filarial nematodes^{54,55} with slight
382 modifications to accommodate the plate size. Briefly, two circles (25mm diameter) sat
383 on opposing sides of the plate, each sitting 0.5 cm from the plate edge, and the
384 midpoint of the plate was marked. *Pseudomonas* sp. TE4607 supernatant was
385 produced by cultivating *Pseudomonas* sp. TE4607 in TSB10 media and then manually
386 separating cells from the supernatant through repeated centrifugation. Two different
387 approaches were adapted to create cue gradients on the assay plates based on *C.*
388 *elegans* chemotaxis studies using agar plug³⁹ and direct spotting⁴⁰ methods. First, plugs
389 were cut from a plate using the large end of a 1000 µL pipette tip and soaked for 5
390 hours in a microcentrifuge tube filled with 1 ml of media or supernatant and rotated on a
391 nutator. Soaked plugs were then set in the center of one plate circle (T-zone) overnight,
392 and removed from plates immediately before adding worms. For direct spotting, 5 µl of
393 test sample (*Pseudomonas* sp. TE4607 supernatant, TSB10, DMSO, or 10 mg/ml
394 labradorin-1) were added to the middle of the T-zone circle while 5 µl of MilliQ water
395 (negative control) was added to the middle of the C-zone circle and allowed 3 hours to

396 disperse. *C. elegans* were prepared by picking 5 L4 worms to several 6 cm plates and
397 incubating for 4 days. On the day of assay set up, *C. elegans* were collected from
398 maintenance plates with M9 media and washed twice with M9 and once with MilliQ
399 water before being resuspended in 1 mL of MilliQ water and counted. A volume
400 equivalent to ~150 adult worms was added to the center point of the plate. The worms
401 in each of the zones were counted manually at 1, 2, and 24 hours after *C. elegans* were
402 transferred to plates and able to chemotax. For agar plug assays, one plate was used
403 per drug condition while for direct spotting assays, two plates per drug condition were
404 performed.

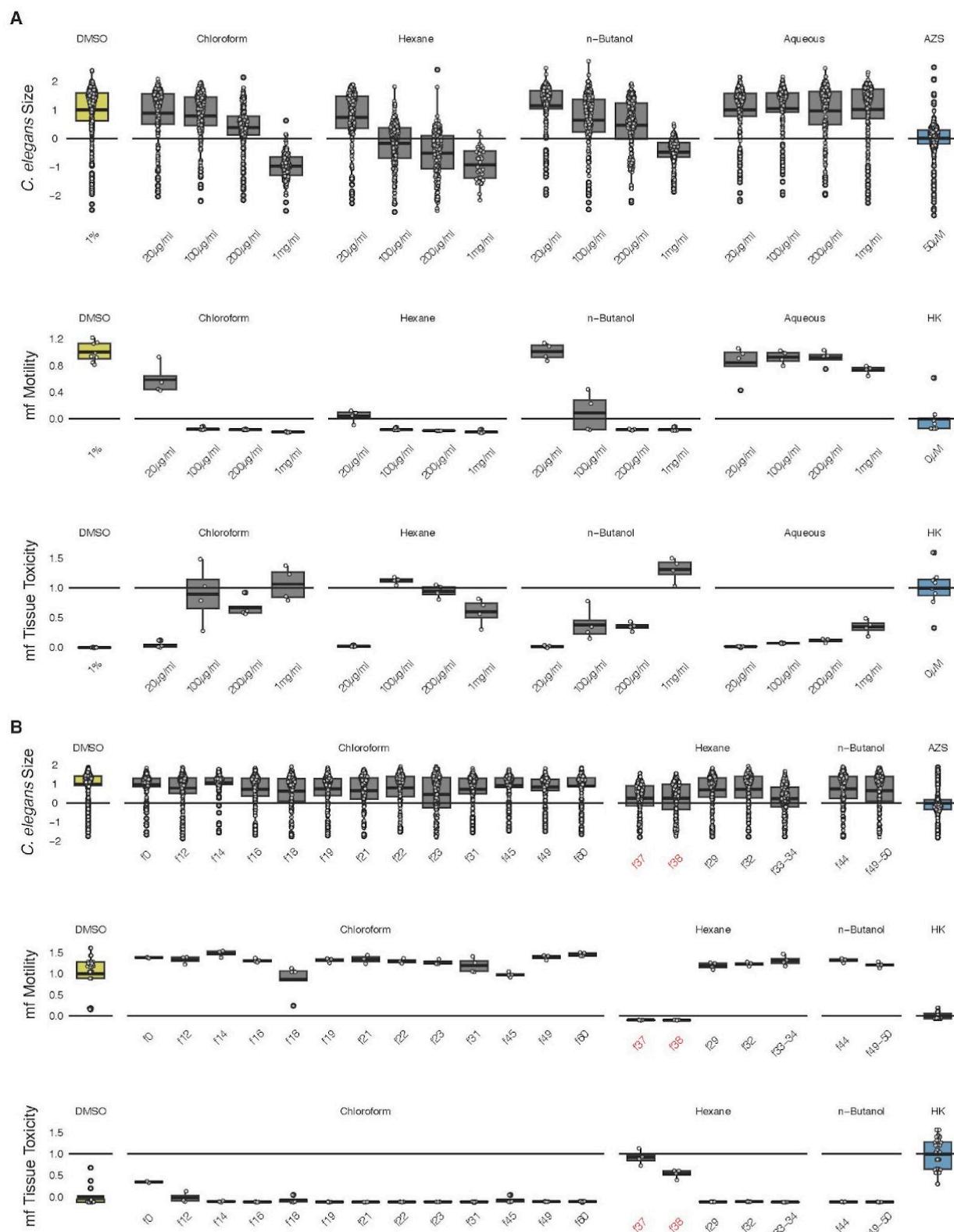
405


406 Acknowledgments

407

408 Support for this research was provided by the University of Wisconsin-Madison Office of
409 the Vice Chancellor for Research and Graduate Education with funding from the
410 Wisconsin Alumni Research Foundation. Additional support was provided by National
411 Institutes of Health NIAID grant R01 AI151171 to MZ and the Department of Education
412 grant P116Z230024 to JH. KTR was funded by the National Institutes of Health grant
413 5T32AI007414. *Brugia* life cycle stages were obtained through the NIH/NIAID Filarial
414 Research Reagent Resource Center (FR3), morphological voucher specimens are
415 stored at the Harold W Manter Museum at University of Nebraska, accession numbers
416 P2021-2032. Finally, the authors would like Elena Rehborg for maintaining and
417 preparing the HEK293T cell line used for mammalian cell toxicity screens. Support for
418 MGC was provided by the Department of Plant Pathology at the University of
419 Wisconsin-Madison and a Research Starter Grant from the American Society for
420 Pharmacognosy.

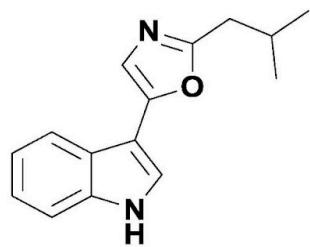
421


422

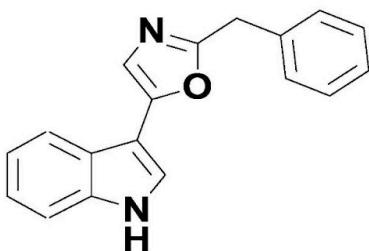
423

424 Figure 1. Primary nematode phenotypic screen of 22 bacterial isolates grown in four
425 media conditions. **(A)** Representative images of controls 48 hours post treatment across

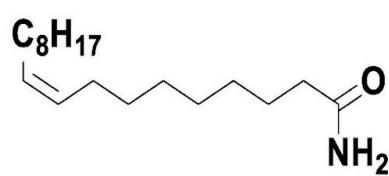
426 primary phenotypic endpoints. Left: *C. elegans* development assay showing worm size
427 after media (- control) and albendazole sulfoxide (AZS, + control) treatment. Middle:
428 *Brugia* microfilariae motility assay showing optical flow heat maps of media treated (-
429 control) and heat-killed (+ control) worms where color is brighter with increased motility.
430 Right: *Brugia* microfilariae tissue toxicity assay showing staining with Promega's CellTox
431 Green reagent in media (- control) and heat-killed (+ control) worms where fluorescence
432 indicates decreased viability. **(B)** Effects of test isolates on *C. elegans* development.
433 Mean worm sizes of treated worms normalized between positive (blue: 50 μ M AZS) and
434 negative (yellow: media) controls. **(C)** Effects of test isolates on *Brugia* microfilariae (mf)
435 motility (triangular points) and tissue toxicity (circular points). Mean phenotypic values
436 for test strain wells are normalized between positive (blue: heat-killed) and negative
437 (yellow: media) controls. **(D)** Effects of top microfilariae hits *Pseudomonas* sp. TE4607
438 and *Pseudomonas viciae* TECH7 on *Brugia* adult motility (left panel) and fecundity (right
439 panel). Supernatants were made from cultures grown in media conditions that elicited
440 the most potent effects in the primary microfilariae screen. Individual worm motility at
441 each time point is normalized to mean control (media) values and fecundity at 48 hours
442 is normalized to initial time point values for each worm. *C. elegans* and microfilariae
443 phenotypes were normalized as follows: (X - positive control) / (negative control -
444 positive control) where X is the phenotypic endpoint value while adult parasite data
445 points were normalized to DMSO and media controls alone: X / negative control after
446 normalizing to individual initial motility scores. Statistical analyses were performed via
447 t-test and reported as follows, * : p<0.05, ** : p<0.01, *** : p<0.001, **** : p<0.0001.
448



452 microfilariae (mf) motility and tissue toxicity endpoints per worm or well after treatment
453 with *Pseudomonas* sp. TE4607 solvent partitions. All values are normalized between
454 mean negative and positive control values. (B) *C. elegans* and *Brugia* microfilariae (mf)
455 phenotypes showing individual worm size and total well values of motility and tissue
456 toxicity in the presence of 100 μ g/ml HPLC fractions generated from each partition.
457 Fractions prioritized for follow-up due to their activity across phenotypes are highlighted
458 in red. Phenotypes were normalized as follows: (X - positive control) / (negative control -
459 positive control) where X is the phenotypic endpoint value.

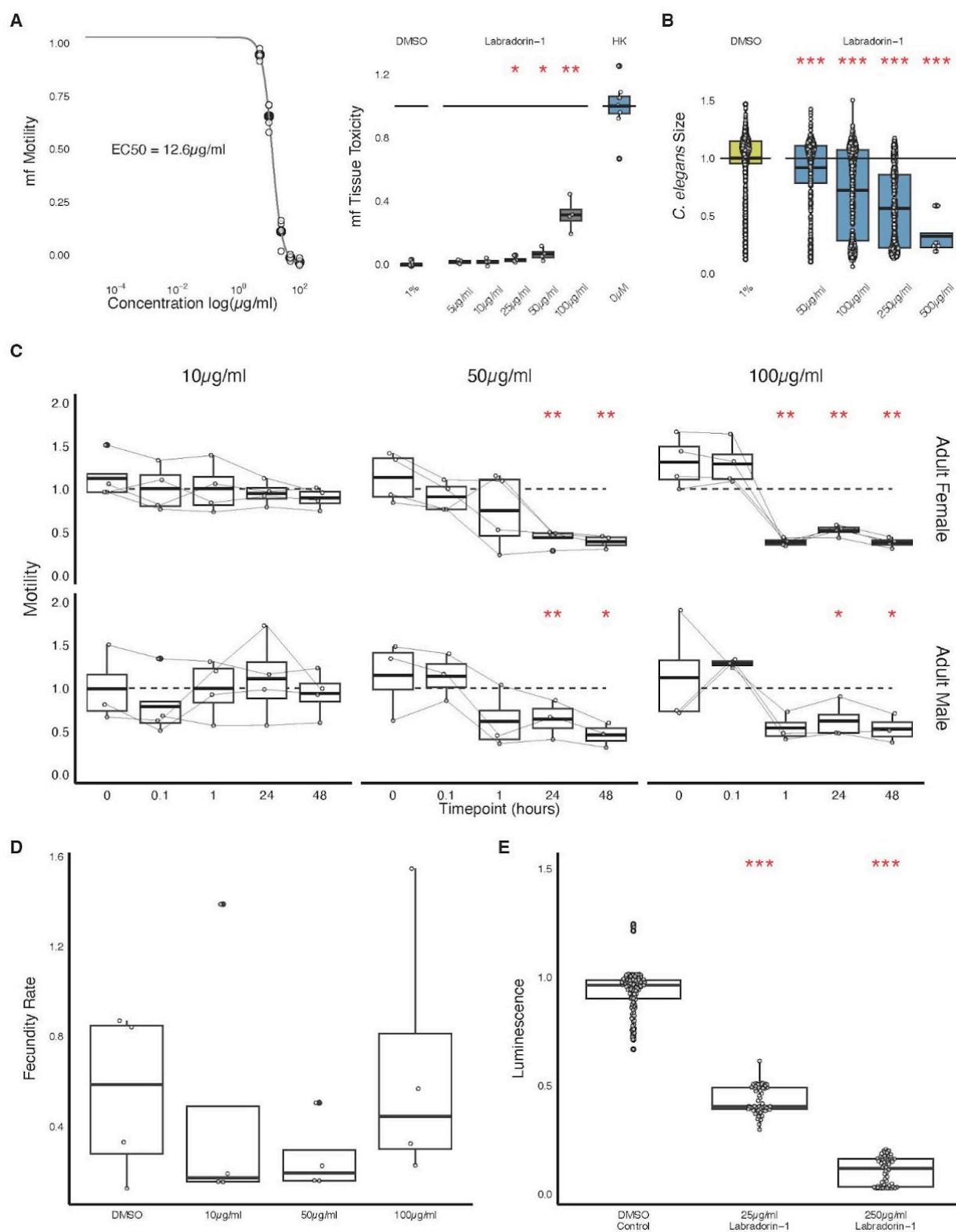

460

461


462

Labradorin-1

Pimpriniphine

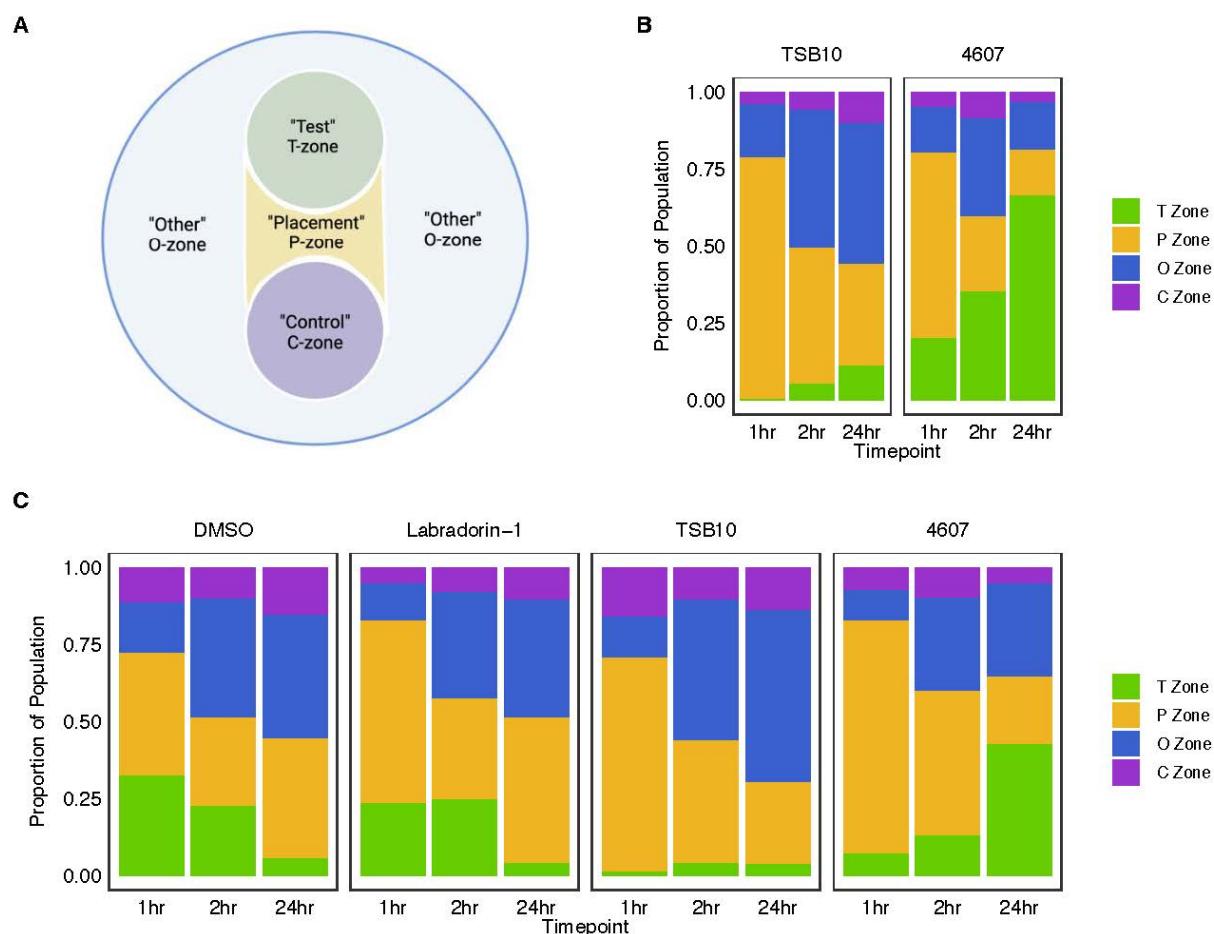


Oleamide

463

464 **Figure 3.** Relevant chemical structures. Labradorin 1(1) was identified as the primary
465 nematicidal active agent from *Pseudomonas* sp. TE4607. Pimpriniphine (2) and
466 oleamide (3) were also identified in active fractions from *Pseudomonas* sp. TE4607 and
467 *Pseudomonas viciae* TECH7.

468


469

470 **Figure 4.** The effects of labradorin 1 on nematodes and mammalian cells. **(A)** *Brugia*
 471 microfilariae (mf) motility dose-response curve (left, EC50 = 12.6 µg/ml) and tissue

472 toxicity (right). Values are normalized between mean negative and positive control
473 values. **(B)** *C. elegans* development responses across concentrations (EC50 = 17.3
474 µg/ml). Values are normalized to mean negative control values. **(C)** *Brugia* adult motility
475 across time points at three labradorin 1 concentrations. Values are normalized to mean
476 negative control values. **(D)** *Brugia* adult fecundity (mf production) at 48 hours
477 post-treatment with three different concentrations of labradorin 1. Values are normalized
478 to initial time point progeny quantities. **(E)** Cell toxicity in Human Embryonic Kidney
479 (HEK293T) cells treated with two concentrations of labradorin-1. A decrease in
480 luminescence indicates cell death and values are normalized to DMSO control values.
481 Statistical analyses were performed via t-test and reported as follows, * : p<0.05, ** :
482 p<0.01, *** : p<0.001, **** : p<0.0001. *C. elegans* and microfilariae phenotypes were
483 normalized as follows: (X - positive control) / (negative control - positive control) where
484 X is the phenotypic endpoint value while adult parasite data points and HEK cell
485 phenotypes were normalized to DMSO and media controls alone: X / negative control.

486

487

488

489 **Figure 5.** *C. elegans* chemosensory responses to *Pseudomonas* sp. TE4607 filtrate
490 and labradorin 1. **(A)** Depiction of agar plate-based chemosensory choice assay. Worms

491 are placed in the center of the “Placement” zone and treatments are placed by pipette
492 or as soaked agar plugs in the center of the “Test” zone. **(B)** Proportion of worms that
493 are present in each zone over three time points after the T-zone was acclimated with
494 agar plugs soaked in TSB10 control (left) or *Pseudomonas* sp. TE4607 filtrate (right).
495 **(C)** Proportion of worms present in each zone across three time points when the control
496 (DMSO or TSB10) or test cue (Labradorin-1 or *Pseudomonas* sp. TE4607 filtrate) was
497 pipetted onto the center of the T-zone.

498

499

500 References

501

- 502 1. Frézal, L. & Félix, M.-A. *C. elegans* outside the Petri dish. *Elife* **4**, (2015).
- 503 2. Marroquin, L. D., Elyassnia, D., Griffitts, J. S., Feitelson, J. S. & Aroian, R. V.
504 *Bacillus thuringiensis* (Bt) toxin susceptibility and isolation of resistance mutants in
505 the nematode *Caenorhabditis elegans*. *Genetics* **155**, 1693–1699 (2000).
- 506 3. Jansen, W. T. M., Bolm, M., Balling, R., Chhatwal, G. S. & Schnabel, R. Hydrogen
507 Peroxide-Mediated Killing of *Caenorhabditis elegans* by *Streptococcus pyogenes*.
508 *Infect. Immun.* **70**, 5202–5207 (2002).
- 509 4. Richter, I. *et al.* Toxin-producing endosymbionts shield pathogenic fungus against
510 micropredators. *MBio* **13**, e0144022 (2022).
- 511 5. Bargmann, C. I. Chemosensation in *C. elegans*. *WormBook* 1–29 (2006)
512 doi:10.1895/wormbook.1.123.1.
- 513 6. Kim, D. H. & Flavell, S. W. Host-microbe interactions and the behavior of
514 *Caenorhabditis elegans*. *J. Neurogenet.* **34**, 500–509 (2020).
- 515 7. Brissette, B. *et al.* Chemosensory detection of polyamine metabolites guides *C.*
516 *elegans* to nutritive microbes. *Sci. Adv.* **10**, eadj4387 (2024).
- 517 8. Qin, X. *et al.* An exploration of the chemical signals and neural pathways driving the
518 attraction of *Meloidogyne incognita* and *Caenorhabditis elegans* to favorable

519 bacteria. *Agronomy (Basel)* **15**, 590 (2025).

520 9. Schulenburg, H. & Ewbank, J. J. The genetics of pathogen avoidance in
521 *Caenorhabditis elegans*. *Mol. Microbiol.* **66**, 563–570 (2007).

522 10. Marogi, J. G., Murphy, C. T., Myhrvold, C. & Gitai, Z. *Pseudomonas aeruginosa*
523 modulates both *Caenorhabditis elegans* attraction and pathogenesis by regulating
524 nitrogen assimilation. *Nat. Commun.* **15**, 7927 (2024).

525 11. Hsueh, Y.-P., Mahanti, P., Schroeder, F. C. & Sternberg, P. W. Nematode-trapping
526 fungi eavesdrop on nematode pheromones. *Curr. Biol.* **23**, 83–86 (2013).

527 12. Niu, Q. *et al.* A Trojan horse mechanism of bacterial pathogenesis against
528 nematodes. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 16631–16636 (2010).

529 13. Campbell, W. C., Fisher, M. H., Stapley, E. O., Albers-Schönberg, G. & Jacob, T. A.
530 Ivermectin: a potent new antiparasitic agent. *Science* **221**, 823–828 (1983).

531 14. Sasaki, T. *et al.* A new anthelmintic cyclodepsipeptide, PF1022A. *J. Antibiot.*
532 (*Tokyo*) **45**, 692–697 (1992).

533 15. Mendoza-de Gives, P. Soil-borne nematodes: Impact in agriculture and livestock
534 and sustainable strategies of prevention and control with special reference to the
535 use of nematode natural enemies. *Pathogens* **11**, 640 (2022).

536 16. Giannelli, A., Schnyder, M., Wright, I. & Charlier, J. Control of companion animal
537 parasites and impact on One Health. *One Health* **18**, 100679 (2024).

538 17. van Sluijs, L. *et al.* Unearthing roundworms: Nematodes as determinants of human
539 health. *One Health* **21**, 101103 (2025).

540 18. Prichard, R. Anthelmintic resistance. *Vet. Parasitol.* **54**, 259–268 (1994).

541 19. Waller, P. J. Anthelmintic resistance. *Vet. Parasitol.* **72**, 391–405; discussion

542 405–12 (1997).

543 20. Fissiha, W. & Kinde, M. Z. Anthelmintic resistance and its mechanism: A review.

544 *Infect. Drug Resist.* **14**, 5403–5410 (2021).

545 21. Geary, T. G. & Thompson, D. P. *Caenorhabditis elegans*: how good a model for

546 veterinary parasites? *Vet. Parasitol.* **101**, 371–386 (2001).

547 22. Elfawal, M. A., Savinov, S. N. & Aroian, R. V. Drug screening for discovery of

548 broad-spectrum agents for soil-transmitted nematodes. *Sci. Rep.* **9**, 12347 (2019).

549 23. Wheeler, N. J. *et al.* Multivariate chemogenomic screening prioritizes new

550 macrofilaricidal leads. *Commun Biol* **6**, 44 (2023).

551 24. Zamanian, M. & Chan, J. D. High-content approaches to anthelmintic drug

552 screening. *Trends Parasitol.* **37**, 780–789 (2021).

553 25. Hurley, A. *et al.* Tiny Earth: A big idea for STEM education and antibiotic discovery.

554 *MBio* **12**, (2021).

555 26. Bode, H. B., Bethe, B., Höfs, R. & Zeeck, A. Big effects from small changes:

556 possible ways to explore nature's chemical diversity. *Chembiochem* **3**, 619–627

557 (2002).

558 27. Wheeler, N. J. *et al.* wrmXpress: A modular package for high-throughput image

559 analysis of parasitic and free-living worms. *PLoS Negl. Trop. Dis.* **16**, e0010937

560 (2022).

561 28. Hu, Y. *et al.* An extensive comparison of the effect of anthelmintic classes on

562 diverse nematodes. *PLoS One* **8**, e70702 (2013).

563 29. Ruiz-Lancheros, E., Viau, C., Walter, T. N., Francis, A. & Geary, T. G. Activity of

564 novel nicotinic anthelmintics in cut preparations of *Caenorhabditis elegans*. *Int. J.*

565 *Parasitol.* **41**, 455–461 (2011).

566 30. Newman, D. Screening and identification of novel biologically active natural
567 compounds. *F1000Res.* **6**, 783 (2017).

568 31. Hussain, A. *et al.* Novel bioactive molecules from *Lentzea violacea* strain AS 08
569 using one strain-many compounds (OSMAC) approach. *Bioorg. Med. Chem. Lett.*
570 **27**, 2579–2582 (2017).

571 32. Hemphill, C. F. P. *et al.* OSMAC approach leads to new fusarielin metabolites from
572 *Fusarium tricinctum*. *J. Antibiot. (Tokyo)* **70**, 726–732 (2017).

573 33. Pettit, G. R. *et al.* Isolation of labradorins 1 and 2 from *Pseudomonas syringae* pv.
574 *coronafaciens*. *J. Nat. Prod.* **65**, 1793–1797 (2002).

575 34. Broberg, A., Bjerketorp, J., Andersson, P., Sahlberg, C. & Levenfors, J. J.
576 Labradorins with antibacterial activity produced by *Pseudomonas* sp. *Molecules* **22**,
577 (2017).

578 35. Liu, X., Wang, Y., Zaleta-Pinet, D. A., Borris, R. P. & Clark, B. R. Antibacterial and
579 anti-biofilm activity of pyrones from a *Pseudomonas mosselii* strain. *Antibiotics*
580 (*Basel*) **11**, (2022).

581 36. Brachmann, A. O. *et al.* A desaturase-like enzyme catalyzes oxazole formation in
582 *Pseudomonas indolyloxazole* alkaloids. *Angew. Chem. Int. Ed Engl.* **60**, 8781–8785
583 (2021).

584 37. Zhang, M.-Z. *et al.* First discovery of pimprinine derivatives and analogs as novel
585 potential herbicidal, insecticidal and nematicidal agents. *Tetrahedron* **79**, 131835
586 (2021).

587 38. Samuel, B. S., Rowedder, H., Braendle, C., Félix, M.-A. & Ruvkun, G.

588 *Caenorhabditis elegans* responses to bacteria from its natural habitats. *Proc. Natl. Acad. Sci. U. S. A.* **113**, E3941–9 (2016).

590 39. Saeki, S., Yamamoto, M. & Iino, Y. Plasticity of chemotaxis revealed by paired
591 presentation of a chemoattractant and starvation in the nematode *Caenorhabditis*
592 *elegans*. *J. Exp. Biol.* **204**, 1757–1764 (2001).

593 40. Bargmann, C., Hartwig, E. & Horvitz, H. Odorant-selective genes and neurons
594 mediate olfaction in *C. elegans*. *Cell* **74**, 515–527 (1993).

595 41. Fryer, E. *et al.* A high-throughput behavioral screening platform for measuring
596 chemotaxis by *C. elegans*. *PLoS Biol.* **22**, e3002672 (2024).

597 42. Hu, M., Ma, Y. & Chua, S. L. Bacterivorous nematodes decipher microbial iron
598 siderophores as prey cue in predator-prey interactions. *Proc. Natl. Acad. Sci. U. S.*
599 *A.* **121**, e2314077121 (2024).

600 43. Michalski, M. L., Griffiths, K. G., Williams, S. A., Kaplan, R. M. & Moorhead, A. R.
601 The NIH-NIAID Filariasis Research Reagent Resource Center. *PLoS Negl. Trop.*
602 *Dis.* **5**, e1261 (2011).

603 44. Chen, I.-M. A. *et al.* IMG/M v.5.0: an integrated data management and comparative
604 analysis system for microbial genomes and microbiomes. *Nucleic Acids Res.* **47**,
605 D666–D677 (2019).

606 45. Parks, D. H. *et al.* GTDB: an ongoing census of bacterial and archaeal diversity
607 through a phylogenetically consistent, rank normalized and complete
608 genome-based taxonomy. *Nucleic Acids Res.* **50**, D785–D794 (2022).

609 46. Porta-de-la-Riva, M., Fontrodona, L., Villanueva, A. & Cerón, J. Basic
610 *Caenorhabditis elegans* methods: synchronization and observation. *J. Vis. Exp.*

611 e4019 (2012) doi:10.3791/4019.

612 47. Stiernagle, T. Maintenance of *C. elegans*. *WormBook* 1–11 (2006)

613 doi:10.1895/wormbook.1.101.1.

614 48. Wheeler, N. J., Ryan, K. T., Gallo, K. J. & Zamanian, M. Bivariate, high-content

615 screening of *Brugia malayi* microfilariae. *protocolexchange* (2022)

616 doi:10.21203/rs.3.pex-1916/v2.

617 49. Wheeler, N. J., Ryan, K. T., Gallo, K. J. & Zamanian, M. Multivariate screening of

618 *Brugia* spp. adults. *protocolexchange* (2022) doi:10.21203/rs.3.pex-1918/v2.

619 50. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat.*

620 *Methods* **9**, 676–682 (2012).

621 51. Wickham, H. *et al.* Welcome to the tidyverse. *J. Open Source Softw.* **4**, 1686

622 (2019).

623 52. Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R.

624 *PLoS One* **10**, e0146021 (2015).

625 53. Murayama, T. & Maruyama, I. N. Plate assay to determine *Caenorhabditis elegans*

626 response to water soluble and volatile chemicals. *Bio Protoc.* **8**, e2740 (2018).

627 54. Mitsui, Y., Miura, M., Bome, D. A. & Aoki, Y. In vitro chemotactic responses of

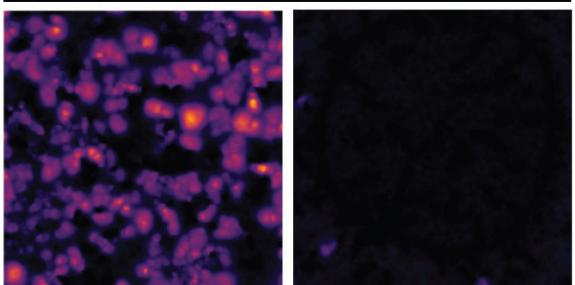
628 *Brugia pahangi* infective larvae to sodium ions. *J. Helminthol.* **86**, 406–409 (2012).

629 55. Kusaba, T., Fujimaki, Y., Vincent, A. L. & Aoki, Y. In vitro chemotaxis of *Brugia*

630 *pahangi* infective larvae to the sera and hemolymph of mammals and lower

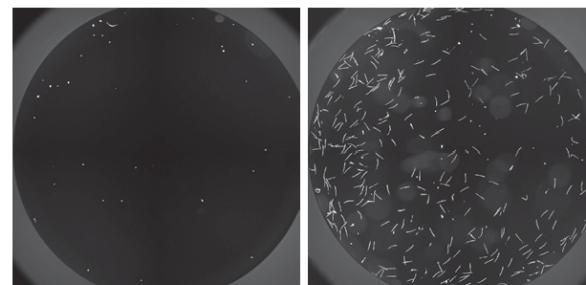
631 animals. *Parasitol. Int.* **57**, 179–184 (2008).

632


A *C. elegans* development

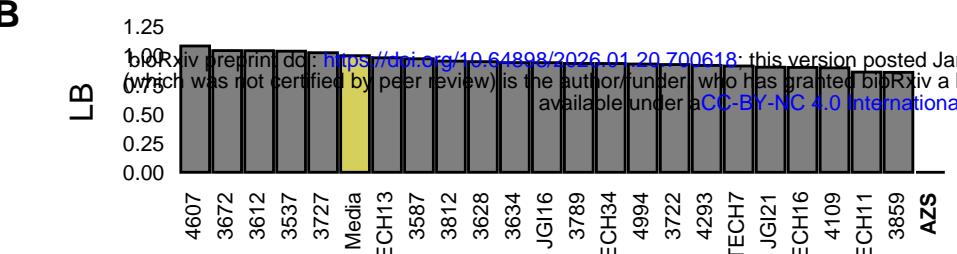
Media

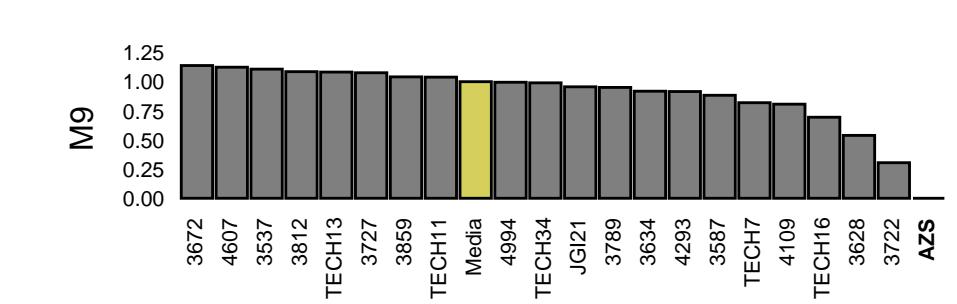
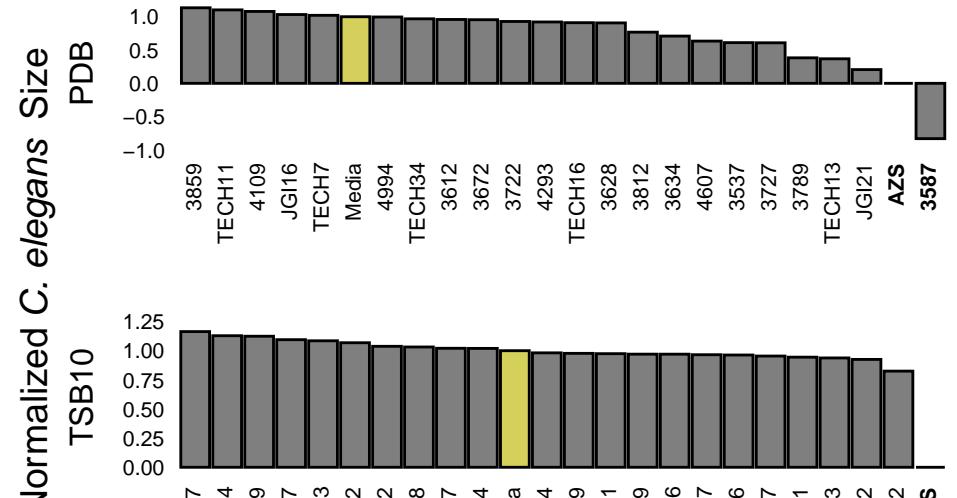
AZS


Brugia mf motility

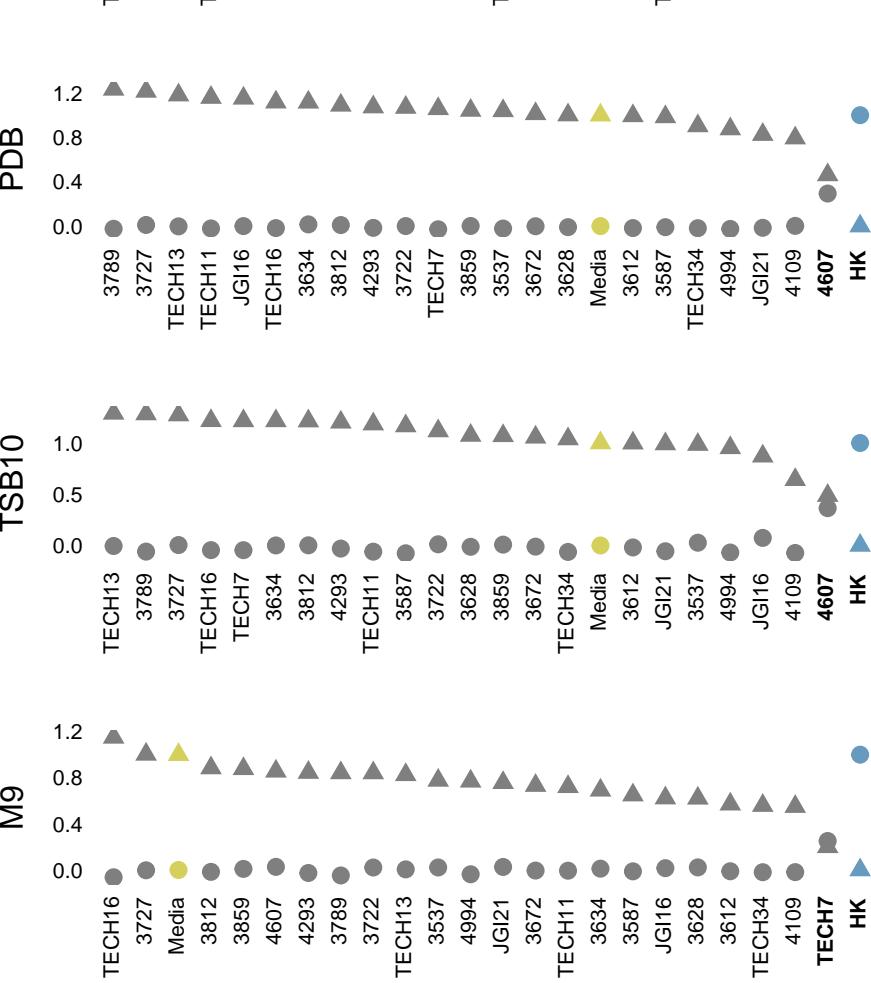
Media

Heat-killed

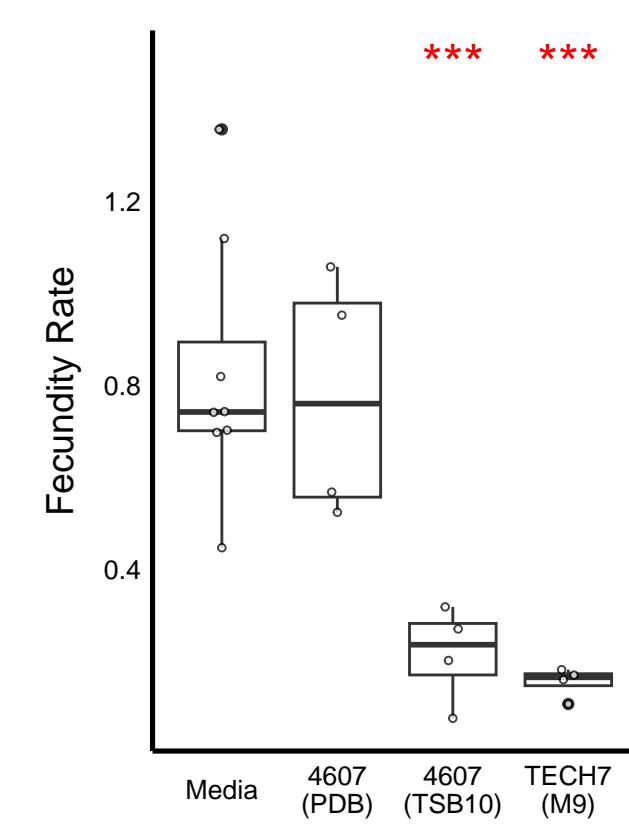
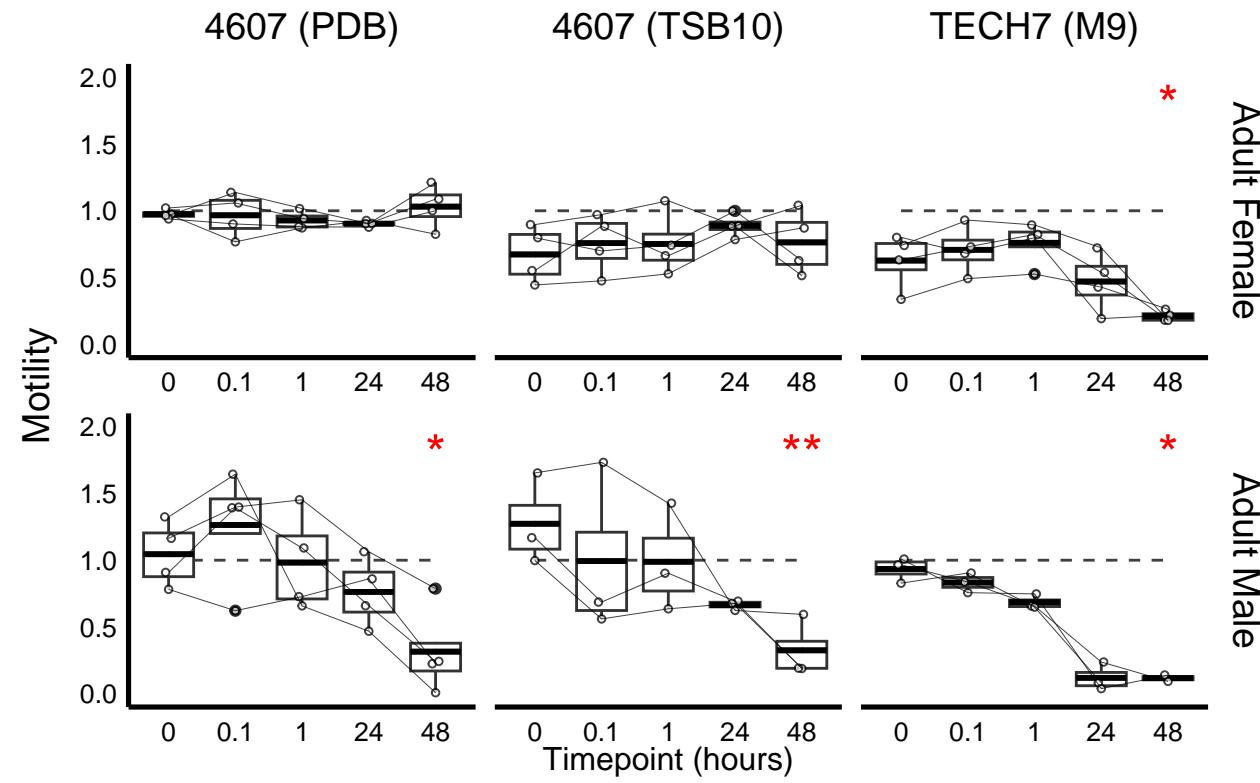

Brugia mf tissue toxicity

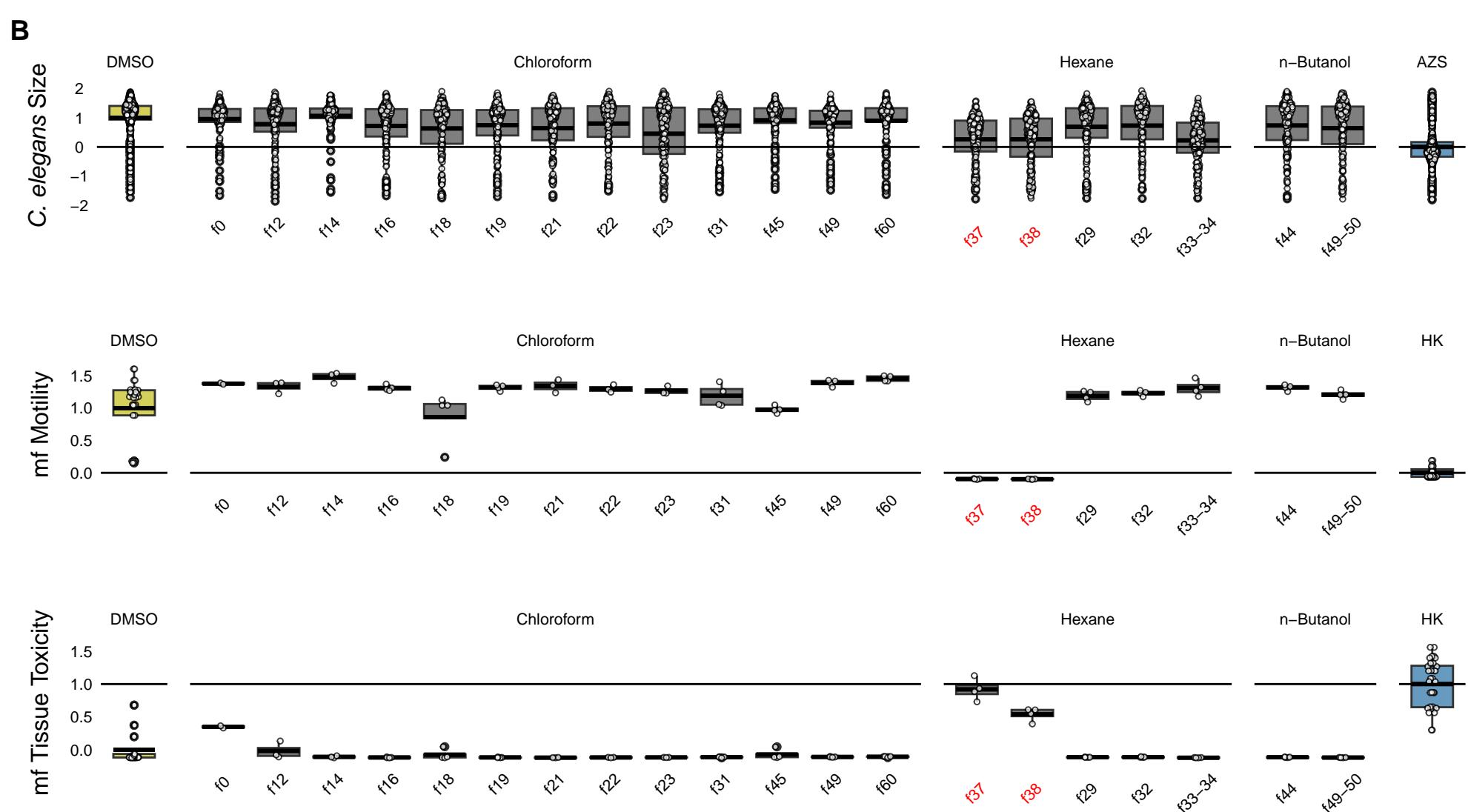
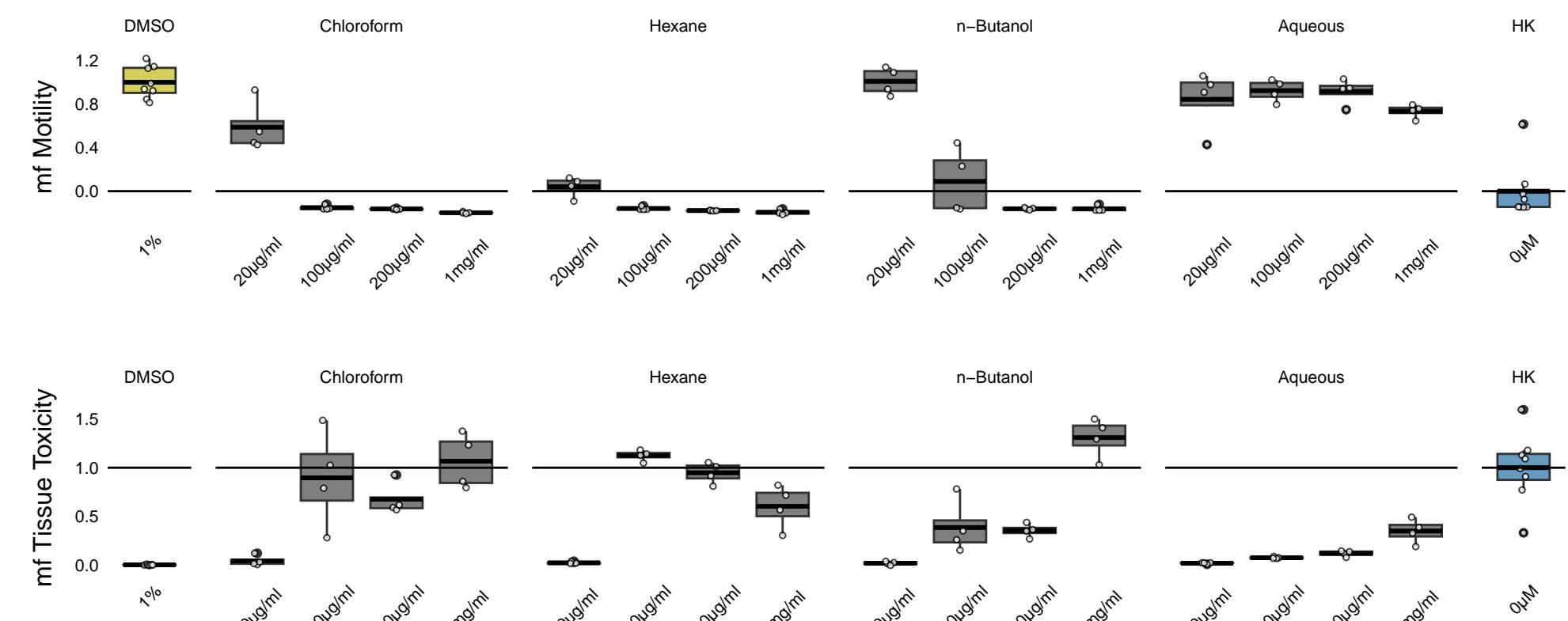
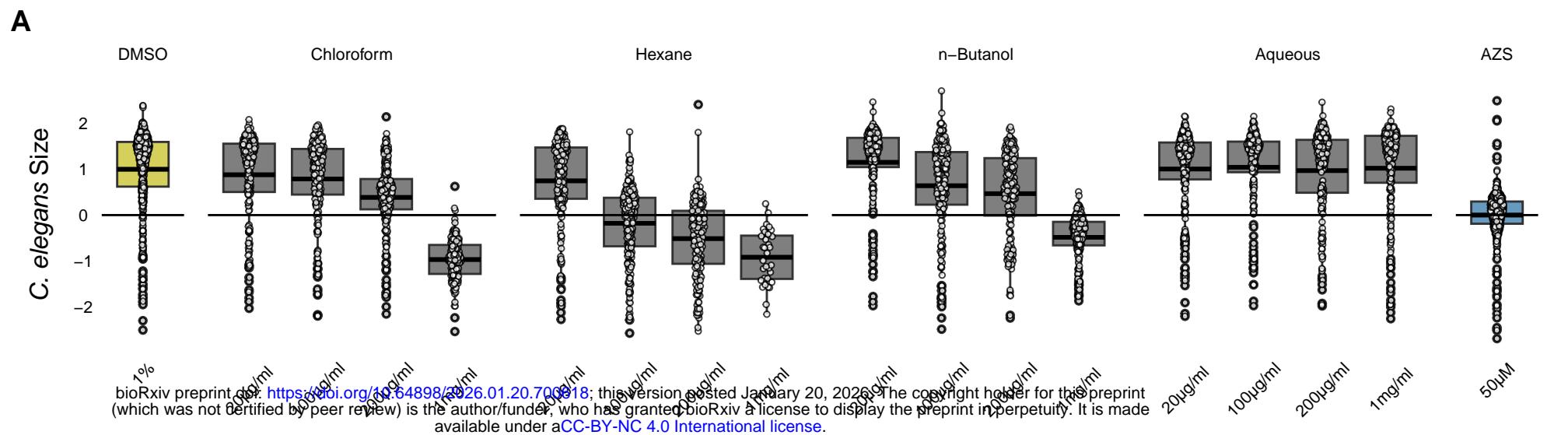


Media

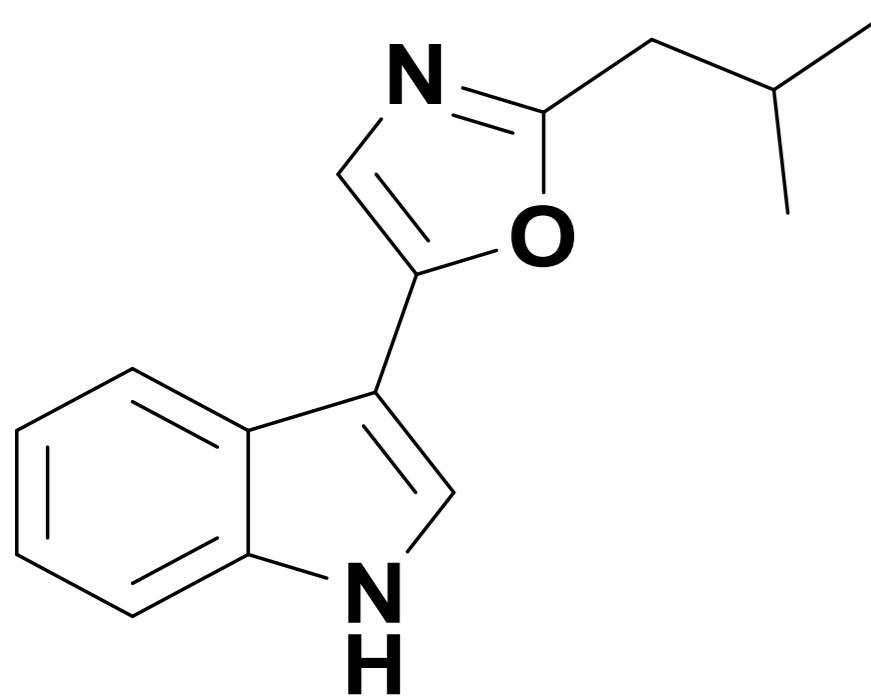
Heat-killed

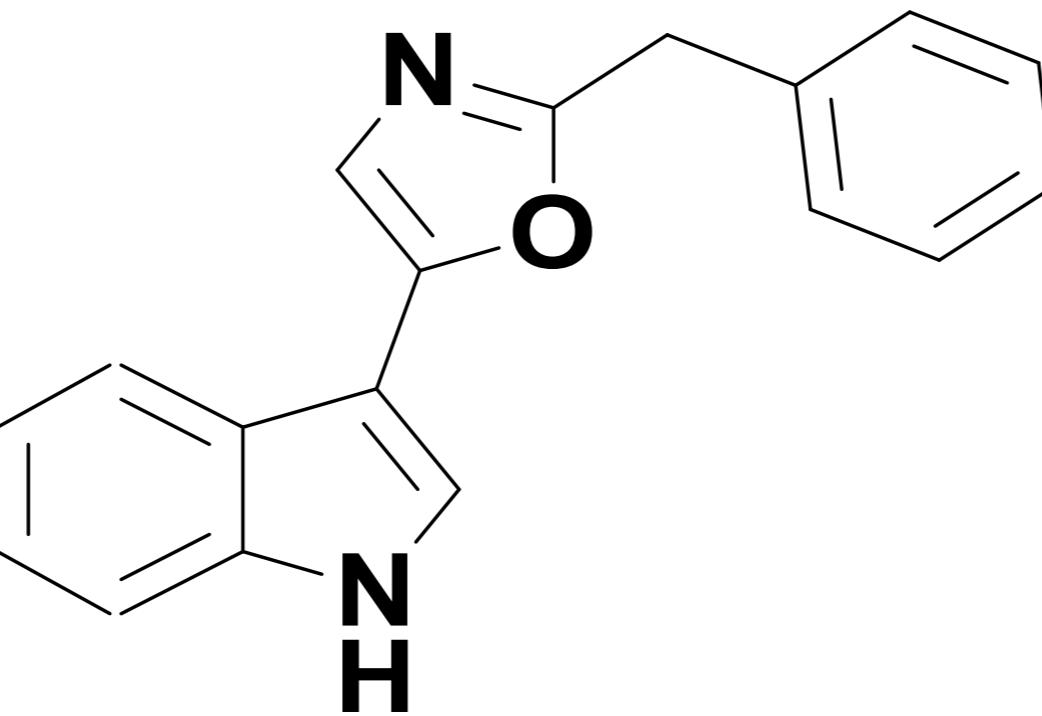


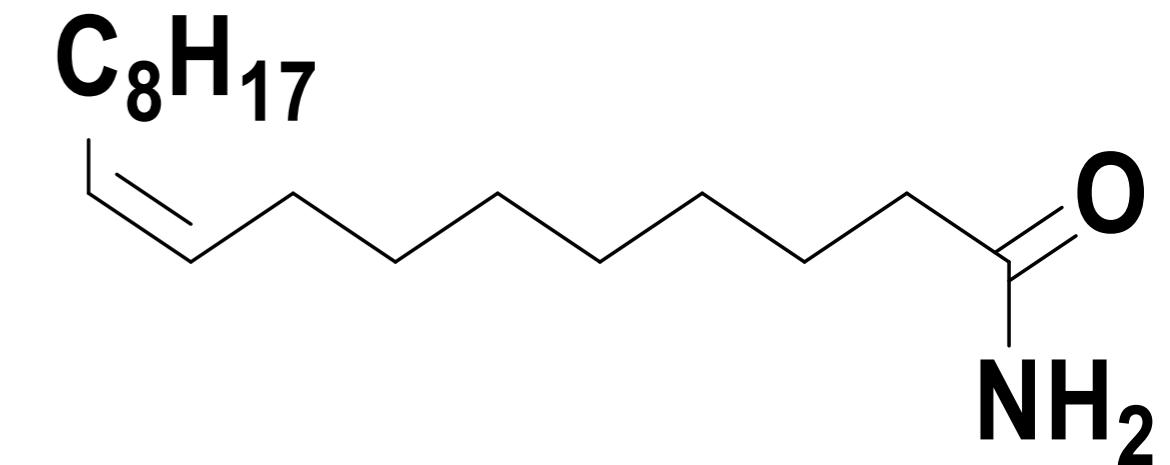
B

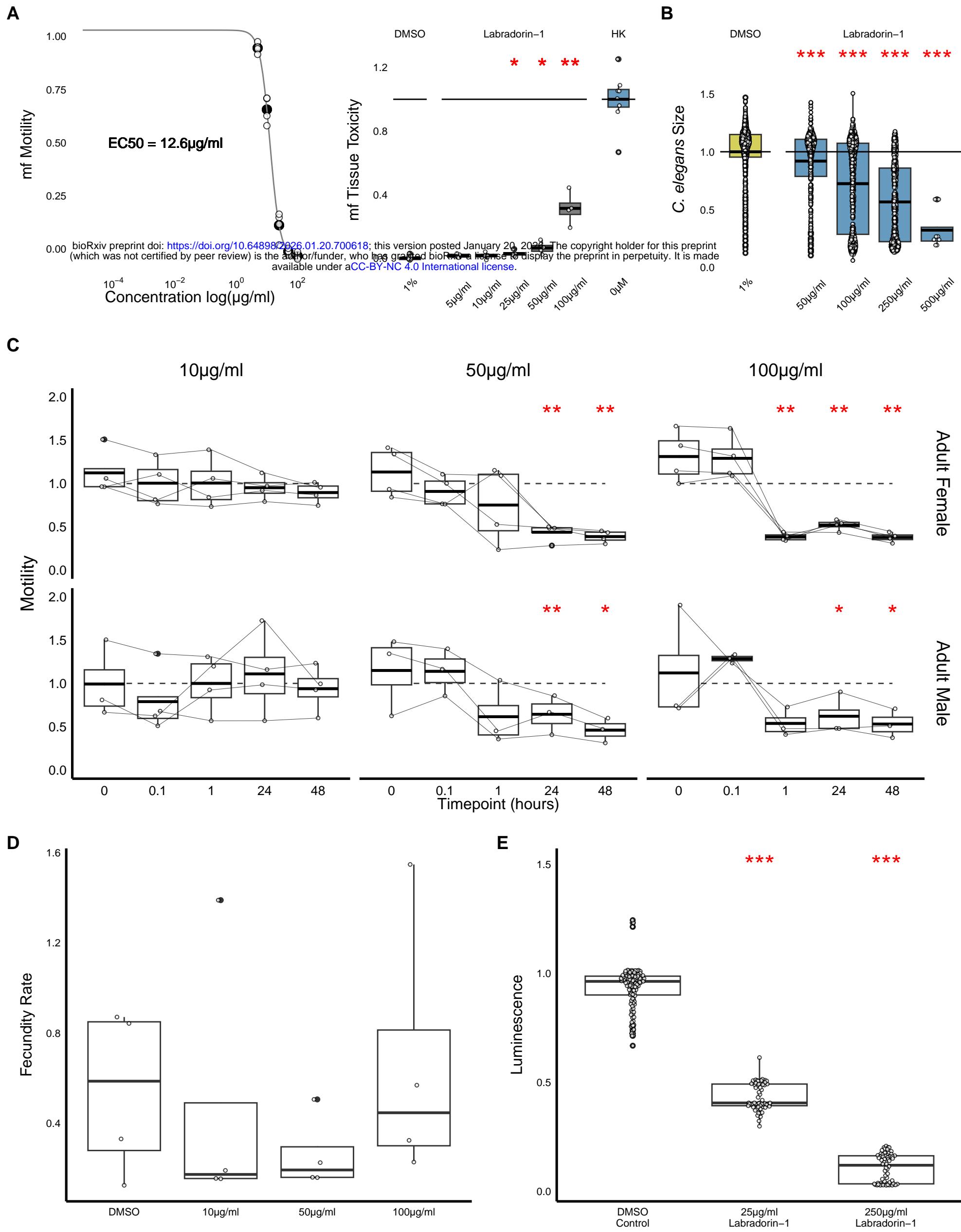


bioRxiv preprint doi: <https://doi.org/10.1101/2026.01.20.700618>; this version posted January 20, 2026. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

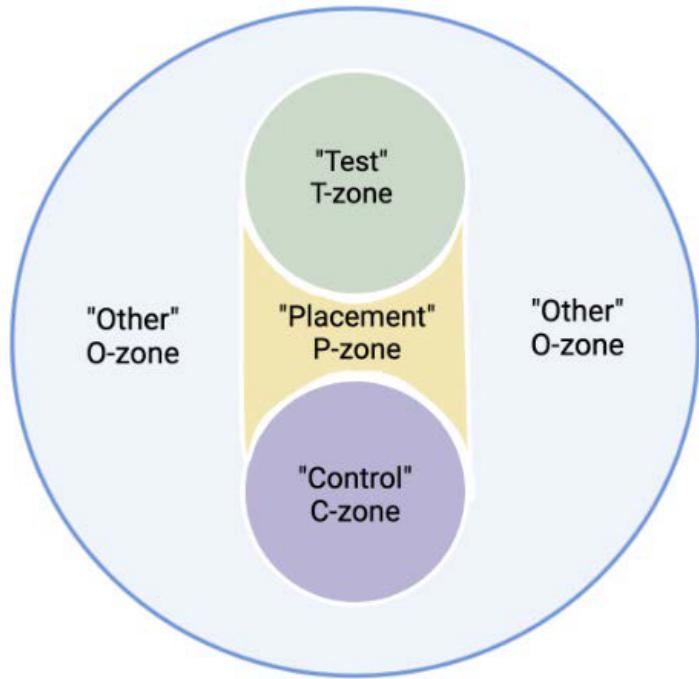
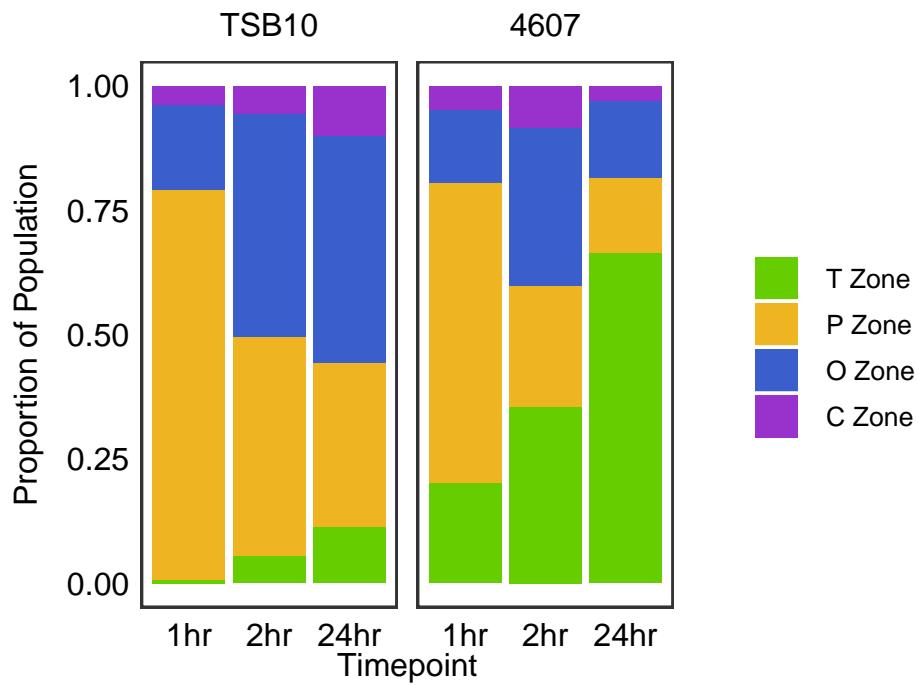
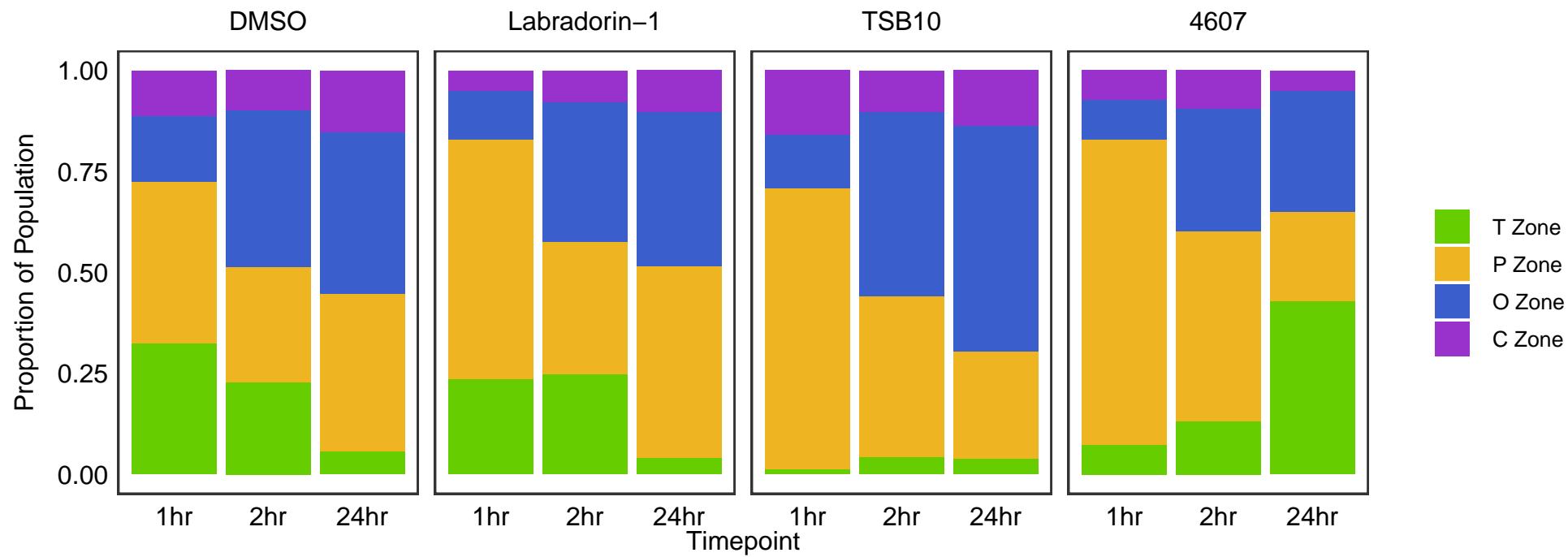





C


D




Labradorin-1

Pimpriniphine

Oleamide

A**B****C**