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​Abstract​

​Ecological interactions between bacteria and nematodes in many environments​
​provide a basis for the prediction that diverse bacteria produce anti-nematode​
​compounds. The discovery of microbial secondary metabolites with broad-spectrum​
​nematostatic or nematicidal properties can be hastened by drug screening approaches​
​that include several nematode species and phenotypes. We cultured a collection of 22​
​soil-derived bacterial isolates that carry in their genomes putative pathways for​
​production of unknown secondary metabolites. Isolates were cultured in various media​
​to enhance natural product diversity and yield, and we evaluated culture filtrates for​
​activity against two evolutionarily distinct nematode species: Clade V free-living​
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​nematode​​Caenorhabditis elegans​​and Clade III mammalian parasitic nematodes in the​
​genus​​Brugia​​. Partitioned extracts from​​Pseudomonas​​sp. strain TE4607 stunted​​C.​
​elegans​​development and caused motility defects in​​both blood-circulating larval and​
​adult stages of​​Brugia​​. The primary active compound​​was identified as labradorin 1, an​
​indole with known antibacterial and anticancer properties that had not been previously​
​described as affecting nematodes. Notably, filtrates of​​Pseudomonas​​sp. TE4607​
​cultures attracted free-living nematodes in sensory assays, adding to evidence that​
​certain​​Pseudomonas​​species modulate the behavior​​of free-living nematodes. These​
​findings underscore the need to further explore the link between nematode sensory​
​responses and whole-organism effects of microbial metabolites, with potential​
​applications in anthelmintic discovery.​

​Introduction​

​Bacteria and nematodes are ubiquitous across diverse environments and can​
​engage in competitive or antagonistic interactions. Free-living nematodes participate in​
​complex interactions with bacteria and fungi, including predator-prey dynamics​​1​ ​and the​
​exchange of toxins​​2–4​​. Nematodes possess a remarkable​​repertoire of chemosensory​
​receptors​​5​​, and many microbes produce signals that​​influence nematode sensory​
​behaviors​​6​​. Previously characterized microbial cues​​include metabolites that facilitate​
​nematode food-seeking or pathogen avoidance​​7–9​ ​and​​attractants used to entrap or​
​infect nematodes​​10–12​​. These inter-kingdom dynamics​​have the potential to provide​
​evolutionary pressure for microbes to develop metabolites or other molecular machinery​
​with both nematicidal and sensory-modulating properties.​

​Bioactive compounds emerging from these microbe-nematode interactions hold​
​promise as pharmaceutical treatments for parasitic diseases and as biocontrol agents​
​targeting closely related free-living plant-parasitic nematodes. Ivermectin and​
​emodepside are examples of antiparasitic drugs derived from microbial natural​
​products​​13,14​ ​that exhibit activity against nematode​​species spanning several clades,​
​owing to significant genomic conservation within the nematode phylum.​

​Parasitic nematodes infect billions of people, cause significant suffering in​
​companion animals, present zoonotic risks, and inflict major economic losses through​
​their impacts on livestock and crops​​15–17​​. For example,​​lymphatic filariasis, caused by​
​Brugia malayi​​, is a CDC-priority neglected tropical​​disease (NTD) and a target for global​
​elimination by the WHO. The need for novel treatments and therapies to address​
​nematode infections is urgent given existing and emerging resistance to antiparasitic​
​drugs in current use​​18–20​ ​and shifts in vector prevalence​​and agricultural conditions​
​caused by climate change. Despite the promise of microbial secondary metabolites as a​
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​source of new nematicides or antiparasitics, efforts to strategically optimize and scale​
​screening methods face several challenges. Free-living nematodes offer a tractable and​
​scalable model in which to screen for bioactivity, but this activity does not reliably predict​
​efficacy against parasitic nematodes​​21–23​​. Direct​​evaluation of anthelmintic potential​
​against parasitic nematodes is preferred, but such efforts are complicated by the need​
​to propagate the nematodes in vertebrate and invertebrate hosts​​24​​. Moreover, the​
​possibility of rediscovering known antiparasitics adds significant investment risk to the​
​search for nematicidal natural products.​

​Here, we attempt to address some of these challenges by performing parallelized​
​screening of phylogenetically distant free-living nematodes (​​Caenorhabditis elegans​​,​
​Clade V) and mammalian parasitic nematodes (​​Brugia​​spp.​​, Clade III). We focused on​
​accessible parasite life cycle stages of​​Brugia​​, which​​can serve as predictive proxies for​
​activity against medically relevant but lower-throughput stages in a two-tiered​
​approach​​23​​. To enhance the chance of discovery of​​new compounds, we tested bacterial​
​isolates that were prioritized based on genomic analysis for unusual biosynthetic​
​capacities and grown in diverse culture media. We evaluated several phenotypic​
​endpoints relating to nematode development, motility, tissue toxicity, and sensory​
​responses. A deeper understanding of how nematodes detect and respond to microbial​
​cues may reveal novel lead compounds and inform future strategies for nematicide and​
​anthelmintic discovery.​

​Results and Discussion​

​Identification of bacterial isolates with nematicidal and anthelmintic activity​

​A large library of bacterial isolates was generated from soil samples collected​
​from a variety of locations in Wisconsin, Illinois, and Minnesota. The bacterial isolates​
​were screened by students for antibacterial activity and then included in the Tiny Earth​
​collection​​25​​. Twenty-two isolates were prioritized​​based on antiSMASH sequence​
​analysis indicating that they likely had unstudied biosynthetic gene clusters predicted to​
​be responsible for synthesis of bioactive small molecules. Bacterial genera represented​
​in this diverse collection included​​Pseudomonas​​,​​Flavobacterium​​,​​Paraburkholderia​​,​
​Curtobacterium​​,​​Streptomyces​​,​​Paenarthrobacter​​,​​Providencia​​,​​Bacillus​​,​​Arthrobacter​​,​
​and​​Paenibacillus​​. We performed primary screens of​​culture supernatant filtrates for​
​each isolate grown in four media (M9, PDB, LB, and TSB10) to broaden the range of​
​secreted natural products​​26​​.​

​These filtrates were first screened against model nematode​​C. elegans​​(Clade​
​V) and parasitic​​Brugia​​microfilariae using three​​phenotypic endpoints: development,​
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​motility, and tissue toxicity​​23​ ​(​​Figure 1A​​). In these high-content imaging assays, four​
​technical replicates (i.e., populations in a microtiter plate well) were performed for each​
​isolate, and phenotypes were quantified and normalized using image-processing​
​software​​27​​. The measurements collected from these​​analyses include worm size as a​
​proxy for​​C. elegans​​development, optical flow to​​quantify parasite motility, green​
​fluorescence (RFU) as an indicator for tissue toxicity and reductions in parasite viability,​
​and progeny quantity to describe fecundity. The positive control in the development​
​assay was 50 µM albendazole sulfoxide, which restricts larval development to the L2​
​phase. The positive control for parasite assays was heat killing, which abolishes motility​
​and generates the maximum achievable tissue toxicity fluorescence value for a given​
​well. In this initial screen, filtrates that elicited phenotypes most similar to positive​
​controls were selected for further analysis.​

​Of the 88 filtrates tested, only those from​​Flavobacterium​​sp. TE3587 grown in​
​PDB media inhibited the growth of​​C. elegans​​larvae​​at or beyond the level of positive​
​controls (​​Figure 1B​​). The absence of other positive​​hits may be due to low​
​concentrations of active compounds in the unconcentrated filtrate, the stringency of the​
​required activity level, or the low permeability of the​​C. elegans​​cuticle​​28,29​​. The​
​Flavobacterium​​sp. TE3587 genome contains several​​lanthipeptide biosynthetic gene​
​clusters that could be responsible for this activity. However, this isolate was deprioritized​
​due to lack of broad-spectrum activity, as these filtrates did not cause​​Brugia​
​microfilariae motility defects or tissue toxicity (​​Figure 1C​​).​

​Brugia​​microfilariae screens revealed two additional​​isolates that reduced motility​
​and caused tissue toxicity:​​Pseudomonas​​sp. TE4607​​grown in PDB and TSB10 and​
​Pseudomonas viciae​​TECH7 grown in M9. These results​​were replicated across two​
​batches of parasites reared separately. The origin of each of these strains is described​
​in methods. Next, we evaluated the effects of these active isolates on​​Brugia​​adult​
​parasite motility and fecundity using filtrates derived from the specific growth conditions​
​in which they had shown activity in microfilariae (​​Figure 1D​​). Filtrates of​​Pseudomonas​
​viciae​​TECH7 significantly reduced adult female motility​​when the bacteria were grown​
​in M9 and reduced adult male motility when the bacteria were grown in any of the four​
​media. Filtrates from​​Pseudomonas viciae​​TECH7 (M9​​media) and​​Pseudomonas​​sp.​
​TE4607 (TSB10 media), but not​​Pseudomonas​​sp. TE4607​​(PDB media) reduced adult​
​female fecundity. The distinct phenotypic profiles across bacterial growth conditions​
​suggests that media type significantly influences metabolite production profiles​​30​​,​
​supporting the relevance of frameworks like One Strain Many Compounds (OSMAC)​​31,32​

​in nematode screening.​
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​Pseudomonas​​sp. TE4607 was prioritized for follow-up because of its potent​
​effects against​​Brugia​​microfilariae stage parasites. TSB10 was chosen for culturing​
​because it supported higher activity in the fecundity assay than other media. Effects on​
​C. elegans​​development might be detected with preparations​​of higher purity, but the​
​results presented here highlight the importance of considering several phenotypic​
​assays in primary screens.​

​Labradorin 1 (1) is the primary active compound in​​Pseudomonas.​​sp. TE4607​

​Crude extracts from two liters of​​Pseudomonas​​sp.​​TE4607 (TSB10) culture were​
​generated by methanol extraction and then partitioned into four solvent phases:​
​chloroform, hexane, n-butanol, and aqueous. These partitions were concentrated to​
​dryness and resuspended in DMSO for screening in the same​​C. elegans​​and​​Brugia​
​microfilariae assays at a range of concentrations (20 µg/ml - 1 mg/mL,​​Figure 2A​​).​
​There were low-level activities in all partitions except for the aqueous phase in all three​
​assays (development, motility, and tissue toxicity), but the most potent phenotypes​
​appeared in the hexane partition. HPLC-generated fractions of the three active​
​partitions were screened in the same assays at a final concentration of 100 µg/ml​
​(​​Figure 2B​​). In these screens, two fractions of the​​hexane partition were the most​
​active, causing modest reduction in​​C. elegans​​development​​and severe reduction in​
​microfilariae motility accompanied by tissue death. These effects were not observed​
​when fractions were screened at 10 µg/ml (data not shown).​

​The chemical structures of active fractions were elucidated using​​1​​H,​​13​​C​​NMR,​
​and LCMS (see SI). Compound 1 (Labradorin 1,​​Figure​​3​​) was the only detectable​
​compound in the most active fraction. The second most active fraction contained a​
​mixture of labradorin 1 and pimprinaphine (​​Figure​​3​​). We infer that the lower activity​
​was due to lower abundance of labradorin 1; fractions containing only pimprinaphine​
​were not active at the concentrations tested. Labradorin 1 has previously been isolated​
​from several​​Pseudomonas​​species​​33–35​​, and the biosynthetic​​pathway for synthesis of​
​indolyloxazole alkaloids in this genus has similarly been established​​36​​. LCMS analysis​
​revealed the previously proposed biosynthetic intermediates (see SI). Labradorin 1 has​
​been reported to be active against certain cancer cell lines​​33​ ​and some species of​
​bacteria​​34,35​​, but this is the first report of its​​nematicidal activity. Several derivatives and​
​analogs in the pimprinine family were previously reported to be nematicidal​​37​​.​

​Extracts from​​Pseudomonas viciae​​TECH7 grown in M9​​had the same profile of​
​activities as TECH4706 grown in TSB10 (see SI). LCMS data indicated the most active​
​compound isolated from the hexane partition was consistent with oleamide (3) (​​Figure​
​3​​), alongside trace components of pimprinaphine (2).​​LCMS data identified labradorin 1​
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​(1) within a mixed-compound fraction that did not exhibit activity, suggesting that other​
​co-occurring compounds may contribute to effects of strain TECH7 on nematodes.​

​Labradorin 1 (1) was purified from​​Pseudomonas​​sp.​​TE4607 culture, and​
​dose-response curves were generated for​​Brugia​​microfilariae​​motility (​​Figure 4A​​) and​
​C. elegans​​development (​​Figure 4B​​). This resulted​​in EC50 values of 12.6 µg/ml (52.4​
​µM) for microfilariae motility and 17.4 µg/ml (72.4 µM) for​​C. elegans​​development.​
​Labradorin 1 inhibited adult motility at concentrations of 50 µg/ml and above (​​Figure​
​4C​​), but did not have a significant effect on adult​​female fecundity (​​Figure 4D​​). To​
​determine whether labradorin 1 was toxic to mammalian cells, we tested it on cell line​
​HEK293T, and it was toxic at concentrations near the microfilariae EC50 value (​​Figure​
​4E​​). Mammalian toxicity at this level would limit​​laboradorin’s utility as a monotherapy to​
​treat parasitic nematodes without either chemical modification or a delivery system that​
​reduces host toxicity.​

​Nematode chemoattraction to labradorin 1-producing​​Pseudomonas​​sp. TE4607​

​Given the deleterious effects of labradorin 1 on free-living nematodes, we were​
​interested in potential behavioral interactions between these worms and the bacterial​
​strains that produce the compound. Soil nematodes can exhibit chemosensory​
​behaviors in response to metabolites produced by both beneficial and deleterious​
​microbes​​38​​. For example, the nematode pathogen​​Pseudomonas​​aeruginosa​​produces​
​chemoattractants that enable it to infect nematodes​​10​​.​​To investigate whether​
​Pseudomonas​​sp. TE4607 modulates sensory responses​​in​​C. elegans​​, we used​
​chemotaxis assays to measure nematode attraction to TE4607 supernatant filtrate and​
​purified labradorin 1. In this choice assay (​​Figure​​5A)​​, worms were placed in the center​
​of agar plates flanked by test cues and water controls, and the number of worms in​
​each zone was determined over time (1, 2, and 24 hr). This assay was conducted using​
​both an agar-plug soaking method​​39​ ​and a direct application​​method​​40​ ​to establish​
​chemical gradients.​

​Using the agar plug method, we observed strong​​C.​​elegans​​attraction towards​
​Pseudomonas​​sp.​​TE4607 filtrate with most worms accumulating​​at this cue over the​
​24-hour observation period. This sensory response is not driven by TSB10 media alone​
​(​​Figure 5B​​). Next, we used the direct application​​method, which requires smaller​
​quantities of test cues, to determine whether nematode chemoattraction to​
​Pseudomonas​​sp. TE4607 is decoupled from the filtrate​​nematicidal activity. The​
​nematodes accumulated around the TE4607 filtrate but populations declined around​
​labradorin 1 over 24 hr, indicating that chemoattraction to TE4607 is independent of​
​labradorin 1 (​​Figure 5C​​). The transient attraction​​of worms to labradorin 1 at the earliest​
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​time points is explained by the known attraction of​​C. elegans​​to the solvent, DMSO​​41​ ​in​
​which labradorin was dissolved. Pyoverdin-like compounds might be responsible for​
​chemoattraction because the TE4607 genome contains biosynthetic gene clusters that​
​resemble those of the pyoverdins, which are a known class of​​C. elegans​
​chemoattractants​​42​​.​​Pseudomonas​​sp. TE4607 and nematodes​​have complex chemical​
​interactions, which make the vast pool of soil​​Pseudomonas​​species a continuously​
​attractive resource for nematicidal compounds for human therapeutics and potential​
​biocontrol agents for plant-parasitic nematodes.​
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​Experimental Section​

​Nematode sources and husbandry​

​C. elegans​​N2 (Bristol) was maintained on NGM plates​​seeded with​​E. coli​​OP50 at​
​20°C.​​Brugia​​microfilariae and adult parasites were​​obtained through the NIH/NIAID​
​Filariasis Research Reagent Resource Center (FR3); morphological voucher specimens​
​are stored at the Harold W. Manter Museum at the University of Nebraska, accession​
​numbers P2021-2032​​43​​.​​Brugia pahangi​​and​​Brugia malayi​​species were used​
​interchangeably according to availability at the time of screening and maintained in​
​RPMI 1640 culture media with penicillin/streptomycin (0.1 mg/ml) at 37°C with 5%​
​atmospheric CO​​2​​.​

​Media and solvents used in this study​

​Reagent- HPLC-, or LCMS-grade methanol, hexanes, chloroform,​​n​​-butanol, and​
​acetonitrile were purchased from Fisher Scientific and used as received. Formic acid,​
​trifluoroacetic acid, d4-methanol with TMS internal standard, and HP-20 resin were​
​purchased from Sigma Aldrich and used as received. Tryptic Soy Broth was prepared at​
​1/10th of the manufacturer’s recommended concentration (TSB10), and Luria-Bertani​
​(LB) and Potato Dextrose Broth (PDB) (BD Bacto​​TM​​)​​were prepared according to​
​manufacturer instructions. M9 medium was prepared as follows. A salt stock solution​
​was prepared from anhydrous Na​​2​​HPO​​4​ ​(33.9 g), KH​​2​​PO​​4​ ​(15 g), NaCl (2.5 g), and​
​NH​​4​​Cl (5 g) in 1 L MilliQ water. Salt stock solution​​(200 mL) was added to 700 mL MilliQ​
​water and autoclaved. Once the solution had cooled to room temperature, sterile 1 M​
​MgSO​​4​ ​(1 mL), 20% m/v glucose (20 mL), and 1 M CaCl​​2​ ​(100 mL) were added per liter​
​of culture broth and the final volume adjusted to 1 L.​

​Isolate collection and filtrate preparation​

​A single colony from solid media of each of the 22 bacterial strains was used to​
​inoculate four different media: LB, TSB10, M9 and PDB. Cultures were shaken at 28℃​
​at 200 rpm for up to four days. When cultures were turbid (or at 4 days if not turbid), 1​
​mL was removed from each and stored at -20℃. Cells and debris were removed from​
​the remaining culture by centrifugation, and the resulting supernatant was filtered​
​through a 0.2-μm filter and frozen until use.​

​Isolate species was first determined by the IMG annotation pipeline​​44​ ​(NCBI tax id:​
​d__Bacteria; p__Pseudomonadota; c__Gammaproteobacteria; o__Pseudomonadales;​
​f__Pseudomonadaceae; g__Pseudomonas; s__Pseudomonas hunanensis) and later​
​classified by GTDB-tk​​45​ ​(d__Bacteria;p__Pseudomonadota;​​c__Gammaproteobacteria;​
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​o__Pseudomonadales; f__Pseudomonadaceae;g__Pseudomonas_E;​
​s__Pseudomonas_E sp024749165).​​Pseudomonas​​sp. TE4607​​was isolated by​
​students at Beloit College from a soil sample taken in Beloit, Wisconsin.​​Pseudomonas​
​viciae​​TECH7 was isolated by students at the University​​of Northwestern, St. Paul from​
​a soil sample taken in Maplewood, Minnesota.​

​Extract, partition, and fraction preparation​

​Pseudomonas​​sp. TE4607​​culture and chemical isolation​​conditions.​​A three-way​
​streak plate was prepared on LBA from a glycerol stock stored at -80°C and incubated​
​at 28°C for two days. Sterile LB broth (5 mL) was inoculated with a single colony and​
​incubated overnight at 28°C. TSB10 (2x1 L) was inoculated with overnight culture (1​
​mL/L) and the broth incubated at 28°C in a shaking incubator at 200 RPM for 24 hours.​
​Pre-activated HP-20 resin (70 g/L) was added and the broth culture shaken for an​
​additional hour. The resin was collected by filtration through miracloth and washed with​
​water (3x500 mL), transferred to a large beaker, and extracted with methanol for one​
​hour in triplicate (3x300 mL). The combined extracts were concentrated under reduced​
​pressure to gain the crude extract. The crude extract was resuspended in 10%​
​MeOH/H​​2​​O (200 mL) with sonication, and sequentially​​partitioned into hexanes (3x50​
​mL), chloroform (3x50 mL), and​​n​​-butanol (3x50 mL).​​The initial partitioning into​
​hexanes often produced an emulsion, which was dispersed using a minimal amount of​
​brine. Each organic layer was washed with water (2x20 mL) and brine (20 mL), dried​
​over Na​​​2​​SO​​4​​, filtered, and concentrated under reduced​​pressure. The partitioned​
​extracts were resuspended in methanol, filtered through a 0.2 mm PTFE filter, and the​
​solvent removed. The hexanes and chloroform partitions were subjected to​
​chromatographic separation by reverse phase HPLC. HPLC analyses were performed​
​on a Shimadzu Nexera Series with a PDA and ELSD detector. A Phenomenex​​TM​ ​Luna 5​
​mm C18 column with dimensions of either 4.6x250 mm or 10x250 mm was used for​
​analytical and semi-prep scale separations, respectively. HPLC chromatograms were​
​processed using LabSolutions software.​​1​​H and​​13​​C​​NMR spectra were measured on a​
​Bruker Avance-500 equipped with a DCH cryoprobe or a Bruker Avance-400 equipped​
​with a BBFO probe. NMR spectra were processed using MestraNova software. All​
​chemical shifts are reported in units of parts per million (ppm) downfield from​
​tetramethylsilane (TMS) and coupling constants are reported in units of hertz (Hz). High​
​resolution mass spectra were measured on a Thermo Q Exactive Plus​​TM​​ ​using​
​electrospray ionization in tandem with a Vanquish VH-P10 LC system equipped with a​
​Phenomenex​​TM​ ​kinetex 1.7 mm C18 column with dimensions​​of 2.1x100 mm. LCMS​
​spectra were processed using FreeStyle software. Compound Discoverer (version 2.0,​
​Thermo Fisher)  was used for assigning known compounds with documented mass​
​spectra and cross checked using Natural Products Atlas and SciFinder where possible.​
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​Purification by HPLC (10-90% or 10-30-70% MeCN/H​​2​​O with 0.1% TFA over 30 min;​
​4.7 ml/min) provided several purified compounds and characterization data are​
​described in supplemental materials.​

​Pseudomonas viciae​​TECH7 was cultured similarly to​​Pseudomonas​​sp. TE4607 in M9​
​broth and TSB10, respectively. Chemical extraction and purification followed the same​
​procedure as described above.​

​Nematode screening protocols​

​Isolate and extract samples were stored at -20°C and thawed, diluted, and aliquoted to​
​empty 96-well assay plates (Greiner Bio-One 655180) immediately prior to assay setup.​
​Filtrate samples were added to plates in volumes of 10 µl per well (1:10 dilution). Extract​
​samples were stored dry and diluted using DMSO to 100X tested concentrations based​
​on extract or fraction weight. Resuspended samples were added to plates in volumes of​
​1µl per well (1:100 dilution). Media alone was used as a negative control in place of​
​DMSO for filtrates. Nematodes were prepared according to species and assay as​
​follows.​​C. elegans development:​​a​​pproximately 18​​hours prior to development​
​screening, gravid worms were synchronized via bleaching​​46​​,​​and embryos were hatched​
​in filter-sterilized K media​​47​​. Titering of larvae,​​preparation of food mixture, and set up​
​and incubation of 96-well assay plates were performed as previously described​​23​​. After​
​48 hours, assay plates were rinsed with M9 using an AquaMax 2000 plate washer​
​(Molecular Devices), and sodium azide (Thermo Scientific) was added at a final​
​concentration of 50mM to paralyze worms. Whole wells were imaged with a 2X​
​objective using an ImageXpress Nano (Molecular Devices), and images were analyzed​
​using the worm size module of wrmXpress v1.4.0​​27​​.​​Brugia​​microfilariae​​:​​motility and​
​tissue toxicity assays using CellTox Green (Promega) were performed as previously​
​described​​48​​. Images were acquired using a 4X objective​​on an ImageXpress Nano and​
​analyzed using the motility and cell toxicity modules of wrmXpress​​27​​.​​Brugia adult​
​parasite:​​motility and fecundity assays were set up​​as described​​49​ ​with minor​
​modifications. Parasites were transferred between plates after the 0-hour and 48-hour​
​time points. Motility videos were cropped using Fiji​​50​ ​and analyzed using optical flow​​23​​.​
​Fecundity images were stitched and segmented using a previously developed Fiji​
​protocol​​49​​. All endpoints were normalized and analyzed​​using R software including​
​tidyverse packages​​51​ ​for statistical analysis and​​the drc package​​52​ ​for dose-response​
​analyses.​​C. elegans​​and microfilariae phenotypes​​were normalized as follows: (X -​
​positive control) / (negative control - positive control) where X is the phenotypic endpoint​
​while adult parasite data points were normalized to DMSO and media controls alone: X /​
​negative control after normalizing to individual initial motility scores.​
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​Cell Line Toxicity Screening​

​HEK293T cells were cultured in DMEM high glucose + GLUTAMAX + pyruvate (Life​
​technologies, 10569010) supplemented with 10% FBS (Fisher A52567) and​
​penicillin-streptomycin (Cytiva SV30010) at 100 U/mL and 100 µg/mL, respectively. For​
​maintenance, cells were split when 80% confluence was reached and passed at a split​
​ratio between 1:5 and 1:10. Briefly, cells were washed with DPBS without calcium or​
​magnesium (Gibco, 14190144), trypsinized with 0.05% trypsin-EDTA (Gibco,​
​25300054), resuspended in culture media, and passed to a T25 flask with fresh culture​
​media. For toxicity assay set up, cells were plated in culture media with dialyzed FBS​
​(Cytiva, SH30079.02) in white, opaque plates (Greiner Bio-One, 07-000-138) 48 hours​
​in advance of drug application. Cells were plated at a concentration that yielded 80%​
​confluence the day of the assay. Some wells contained media with no cells as controls​
​and to cell wells, DMSO or labradorin-1 was added at a 1:100 dilution. After 24 hours,​
​plates and CellTiter-Glo Luminescent Cell Viability Assay (Promega) reagent were​
​equilibrated to room temperature before the reagent was added to wells according to​
​label instructions. Plates were then left at room temperature and protected from light​
​exposure for 10 minutes prior to using a SpectraMax Plate Reader (Molecular Devices)​
​to read luminescence values using an integration time of 750ms. Luminescence data​
​was analyzed using R software and normalized to DMSO controls.​

​C. elegans chemosensory assay​

​Chemotaxis agar media​​53​ ​was prepared (2.5% agar, 1mM​​CaCl​​2​​, 5mM KHPO​​4​​, 1mM​
​MgSO​​4​​) and poured into 10 cm petri dishes. Plate markings​​were drawn based on​
​previous chemotaxis screens performed for filarial nematodes​​54,55​ ​with slight​
​modifications to accommodate the plate size. Briefly, two circles (25mm diameter) sat​
​on opposing sides of the plate, each sitting 0.5 cm from the plate edge, and the​
​midpoint of the plate was marked.​​Pseudomonas​​sp.​​TE4607 supernatant was​
​produced by cultivating​​Pseudomonas​​sp. TE4607 in​​TSB10 media and then manually​
​separating cells from the supernatant through repeated centrifugation. Two different​
​approaches were adapted to create cue gradients on the assay plates based on​​C.​
​elegans​​chemotaxis studies using agar plug​​39​ ​and direct​​spotting​​40​ ​methods. First, plugs​
​were cut from a plate using the large end of a 1000 µL pipette tip and soaked for 5​
​hours in a microcentrifuge tube filled with 1 ml of media or supernatant and rotated on a​
​nutator. Soaked plugs were then set in the center of one plate circle (T-zone) overnight,​
​and removed from plates immediately before adding worms. For direct spotting, 5 µl of​
​test sample (​​Pseudomonas​​sp. TE4607 supernatant, TSB10,​​DMSO, or 10 mg/ml​
​labradorin-1) were added to the middle of the T-zone circle while 5 µl of MilliQ water​
​(negative control) was added to the middle of the C-zone circle and allowed 3 hours to​
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​disperse.​​C. elegans​​were prepared by picking 5 L4 worms to several 6 cm plates and​
​incubating for 4 days. On the day of assay set up,​​C. elegans​​were collected from​
​maintenance plates with M9 media and washed twice with M9 and once with MilliQ​
​water before being resuspended in 1 mL of MilliQ water and counted. A volume​
​equivalent to ~150 adult worms was added to the center point of the plate. The worms​
​in each of the zones were counted manually at 1, 2, and 24 hours after​​C. elegans​​were​
​transferred to plates and able to chemotax. For agar plug assays, one plate was used​
​per drug condition while for direct spotting assays, two plates per drug condition were​
​performed.​
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​Figure 1.​​Primary nematode phenotypic screen of 22​​bacterial isolates grown in four​
​media conditions.​​(A)​​Representative images of controls​​48 hours post treatment across​
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​primary phenotypic endpoints. Left:​​C. elegans​​development assay showing worm size​
​after media (- control) and albendazole sulfoxide (AZS, + control) treatment. Middle:​
​Brugia​​microfilariae motility assay showing optical​​flow heat maps of media treated (-​
​control) and heat-killed (+ control) worms where color is brighter with increased motility.​
​Right:​​Brugia​​microfilariae tissue toxicity assay​​showing staining with Promega’s CellTox​
​Green reagent in media (- control) and heat-killed (+ control) worms where fluorescence​
​indicates decreased viability.​​(B)​​Effects of test​​isolates on​​C. elegans​​development.​
​Mean worm sizes of treated worms normalized between positive (blue: 50 µM AZS) and​
​negative (yellow: media) controls.​​(C)​​Effects of​​test isolates on​​Brugia​​microfilariae (mf)​
​motility (triangular points) and tissue toxicity (circular points). Mean phenotypic values​
​for test strain wells are normalized between positive (blue: heat-killed) and negative​
​(yellow: media) controls.​​(D)​​Effects of top microfilariae​​hits​​Pseudomonas​​sp. TE4607​
​and​​Pseudomonas viciae​​TECH7 on​​Brugia​​adult motility​​(left panel) and fecundity (right​
​panel). Supernatants were made from cultures grown in media conditions that elicited​
​the most potent effects in the primary microfilariae screen. Individual worm motility at​
​each time point is normalized to mean control (media) values and fecundity at 48 hours​
​is normalized to initial time point values for each worm.​​C. elegans​​and microfilariae​
​phenotypes were normalized as follows: (X - positive control) / (negative control -​
​positive control) where X is the phenotypic endpoint value while adult parasite data​
​points were normalized to DMSO and media controls alone: X / negative control after​
​normalizing to individual initial motility scores. Statistical analyses were performed via​
​t-test and reported as follows, * : p<0.05, ** : p<0.01, *** : p<0.001, **** : p<0.0001.​
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​Figure 2.​​The effects of isolate​​Pseudomonas​​sp. TE4607​​partitions and fractions​
​across nematode phenotypes of interest.​​(A)​​C. elegans​​development and​​Brugia​
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​microfilariae (mf) motility and tissue toxicity endpoints per worm or well after treatment​
​with​​Pseudomonas​​sp. TE4607 solvent partitions. All​​values are normalized between​
​mean negative and positive control values.​​(B)​​C.​​elegans​​and​​Brugia​​microfilariae (mf)​
​phenotypes showing individual worm size and total well values of motility and tissue​
​toxicity in the presence of 100µg/ml HPLC fractions generated from each partition.​
​Fractions prioritized for follow-up due to their activity across phenotypes are highlighted​
​in red. Phenotypes were normalized as follows: (X - positive control) / (negative control -​
​positive control) where X is the phenotypic endpoint value.​

​Figure 3.​​Relevant chemical structures. Labradorin​​1(1)  was identified as the primary​
​nematicidal active agent from​​Pseudomonas​​sp. TE4607.​​Pimpriniphine (2) and​
​oleamide (3) were also identified in active fractions from​​Pseudomonas​​sp. TE4607 and​
​Pseudomonas viciae​​TECH7.​

​452​

​453​

​454​

​455​

​456​

​457​

​458​

​459​

​460​

​461​

​462​

​463​

​464​

​465​

​466​

​467​

​468​

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2026. ; https://doi.org/10.64898/2026.01.20.700618doi: bioRxiv preprint 

https://doi.org/10.64898/2026.01.20.700618
http://creativecommons.org/licenses/by-nc/4.0/


​Figure 4.​​The effects of labradorin 1 on nematodes​​and mammalian cells.​​(A)​​Brugia​
​microfilariae (mf) motility dose-response curve (left, EC50 = 12.6 µg/ml) and tissue​
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​toxicity (right). Values are normalized between mean negative and positive control​
​values.​​(B)​​C. elegans​​development responses across​​concentrations (EC50 = 17.3​
​µg/ml). Values are normalized to mean negative control values.​​(C)​​Brugia​​adult motility​
​across time points at three labradorin 1 concentrations. Values are normalized to mean​
​negative control values.​​(D)​​Brugia​​adult fecundity​​(mf production) at 48 hours​
​post-treatment with three different concentrations of labradorin 1. Values are normalized​
​to initial time point progeny quantities.​​(E)​​Cell​​toxicity in Human Embryonic Kidney​
​(HEK293T) cells treated with two concentrations of labradorin-1. A decrease in​
​luminescence indicates cell death and values are normalized to DMSO control values.​
​Statistical analyses were performed via t-test and reported as follows, * : p<0.05, ** :​
​p<0.01, *** : p<0.001, **** : p<0.0001.​​C. elegans​​and microfilariae phenotypes were​
​normalized as follows: (X - positive control) / (negative control - positive control) where​
​X is the phenotypic endpoint value while adult parasite data points and HEK cell​
​phenotypes were normalized to DMSO and media controls alone: X / negative control.​

​Figure 5.​​C. elegans​​chemosensory responses to​​Pseudomonas​​sp. TE4607 filtrate​
​and labradorin 1.​​(A)​​Depiction of agar plate-based​​chemosensory choice assay. Worms​
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​are placed in the center of the “Placement” zone and treatments are placed by pipette​
​or as soaked agar plugs in the center of the “Test” zone.​​(B)​​Proportion of worms that​
​are present in each zone over three time points after the T-zone was acclimated with​
​agar plugs soaked in TSB10 control (left) or​​Pseudomonas​​sp. TE4607 filtrate (right).​
​(C)​​Proportion of worms present in each zone across​​three time points when the control​
​(DMSO or TSB10) or test cue (Labradorin-1 or​​Pseudomonas​​sp. TE4607 filtrate) was​
​pipetted onto the center of the T-zone.​
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