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​Abstract​

​The anthelmintics ivermectin, albendazole, and diethylcarbamazine are the backbone of mass​
​drug administration (MDA) campaigns targeting human filariasis, yet their direct effects on​
​parasites are still not fully defined or understood. The clinical effects of these drugs are stage​
​dependent, resulting in effective clearance of circulating microfilariae but only limited activity​
​against adult worms, a pattern that complicates disease surveillance and elimination efforts.​
​Although molecular targets have been identified or proposed for some antifilarial drugs, their​
​precise modes of action remain opaque, and conventional​​in vitro​​assays of motility or viability​
​have generally failed to reflect pharmacologically relevant effects. There is growing evidence​
​that cryptic phenotypes involving altered host-parasite interactions, including changes in​
​parasite secretions, may help reconcile these discrepancies. Focusing on the causative species​
​of lymphatic filariasis, we used high content imaging and quantitative mass spectrometry to​
​enable deeper phenotypic profiling of drug responses in microfilariae and adult worms exposed​
​to antifilarial compounds. In microfilariae, altered environmental conditions (temperature and​
​salinity) lead to modest ivermectin effects on motility at therapeutic concentrations. In adult​
​parasites, we show that drug responses vary with worm age and that different anthelmintics​
​induce distinct changes in the secretory proteome. This improved phenotypic resolution​
​advances our understanding of drug action in intra-host stages and highlights how antifilarial​
​drugs can alter secretory cargo relevant to the detection of adult parasites that persist after drug​
​treatment.​

​Introduction​

​Lymphatic filariasis (LF) is a neglected tropical disease that is transmitted by mosquitoes​
​infected with the parasitic nematodes​​Wuchereria bancrofti​​,​​Brugia malayi​​, and​​Brugia timori​
​and causes severe chronic disability​​[1,2]​​. According to the World Health Organization (WHO),​
​an estimated 51 million people are currently affected by LF, with 657 million at risk across 39​
​countries​​[3]​​. Current control and elimination strategies rely primarily on mass drug​
​administration (MDA) using combinations of ivermectin (IVM), albendazole (ABZ), and​
​diethylcarbamazine (DEC) to clear blood-circulating microfilariae (mf) and break the cycle of​
​transmission​​[4,5]​​. While MDA programs have achieved significant progress toward reducing LF​
​transmission and disease burden, several challenges remain. Antifilarial drugs require repeated​
​annual treatment​​[6]​​and have limited efficacy against adult worms. These drugs can also cause​
​adverse effects in regions co-endemic with other filarial diseases​​[7]​​, and there is growing​
​concern about the emergence of drug resistance, which has already been documented in​
​closely related veterinary nematodes​​[8,9]​​. Finally, there is a critical need to improve methods to​
​specifically detect the presence of surviving adult parasites in post-treatment surveillance​​[4,10]​​.​
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​A major factor contributing to these challenges is our incomplete understanding of how existing​
​antifilarial drugs exert their effects. Although these compounds have been used for decades,​
​their precise mechanisms of action and the full spectrum of their antiparasitic activity remain​
​poorly defined. While broad classes of molecular targets have been identified for antifilarial​
​drugs​​[11,12]​​, how engagement of these targets translates into organismal phenotypes or​
​stage-specific parasite clearance is not fully understood​​[13–15]​​. For example, ivermectin acts​
​on glutamate-gated chloride channels (GluCls) but produces no overt​​in vitro​​phenotypes in mf​
​at therapeutically relevant concentrations. Several studies have described​​in vitro​​inhibition of​
​mf motility in response to IVM, but only at concentrations much higher than those required to​
​clear parasites in the host​​[16–18]​​. This apparent disconnect between​​in vivo​​efficacy and​​in​
​vitro​​effect has been partly reconciled by work showing that ivermectin inhibits mf secretory​
​function through inhibition of protein and vesicle release​​[19–22]​​. Similar host-dependent or​
​indirect mechanisms may underlie the actions of albendazole and diethylcarbamazine​​[23–25]​​.​

​A clearer picture of these mechanisms could not only guide the discovery and development of​
​more effective therapeutics but also improve how current drugs are deployed and monitored in​
​elimination programs​​[26,27]​​. Drug responses are classically assessed through​​in vitro​
​measures of parasite motility and viability​​[17,28–30]​​. Expanding the range of phenotypes​
​measured across different environmental conditions, including those that reflect varying host​
​states and directly or indirectly alter parasite secretory activity, would enable a more​
​comprehensive assessment of drug action. Refining our understanding of these effects is also​
​critical for identifying reliable molecular markers for surveillance applications in the context of​
​treatment​​[31–34]​​.​

​In this study, we used an image based phenotyping platform to assess​​in vitro​​drug responses in​
​intramammalian life stages, both to validate established effects and to map broader response​
​patterns relevant to the stage specificity of drug action. We examined how parasite culture​
​conditions and age shape these responses, revealing that physiological context can sensitize​
​parasites to antifilarial drugs at concentrations more aligned with therapeutic exposure. Finally,​
​we profiled drug induced changes in protein secretion in adult worms to more directly capture​
​treatment associated phenotypes linked to secretory dysregulation. Together, these approaches​
​provide a multidimensional view of antifilarial drug action.​

​Results​

​Image-based profiling of microfilariae responses to anthelmintics​

​To establish a baseline for the​​in vitro​​effects of​​existing and emerging antifilarial drugs on​
​microfilariae (mf), we quantified the motility and viability of​​Brugia​​mf exposed to ivermectin​
​(IVM, 50nM-1mM), albendazole sulfoxide (AZS, 5nM-100µM), diethylcarbamazine (DEC,​
​50nM-1mM), and emodepside (EMO, 500pM-100µM) at 24 and 48 hours post-treatment.​
​High-content imaging data was processed using wrmXpress​​[35]​​to generate dose-response​
​curves for parasite motility (optical flow) and to assess viability (green fluorescence) (​​Fig 1A​​).​
​These data are consistent with previous observations​​[17,23,24,36]​​that the​​in vitro​​motility and​
​viability effects of antifilarials do not fully explain the mechanism of action of drugs used to clear​
​the microfilariae stage (IVM, ABZ, and DEC) (​​Fig 1B-D​​).​​While EMO effects on mf motility can​
​be detected at pharmacologically relevant concentrations (IC50 ~90nM at 24 hrs)​​[37]​​, IVM​
​elicits effects only at concentrations much higher than experienced in the host (IC50 ~3µM;​
​plasma C​​max​ ​~83nM), and AZS and DEC exhibit no discernible​​phenotypic effects. Because IVM,​
​DEC, and ABZ are frequently used in combination, we repeated these assays using combined​
​drug treatments to evaluate whether drug interactions or synergies could be detected. The​
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​addition of AZS and DEC to IVM treatment or DEC to EMO treatment did not significantly alter​
​the phenotypic responses of mf (​​Fig 1E​​). Overall,​​motility results are consistent between​​B.​
​pahangi​​and​​B. malayi​​mf across the treatments tested​​(​​S1 Fig​​and​​S1 Table​​). Across all tested​
​drug conditions, paralytic effects are associated with only subtle impacts on tissue viability,​
​reflecting that none of these drugs are directly microfilaricidal​​[38–40]​​. However, morphological​
​differences were observed among paralyzed worms treated with IVM and EMO (​​Fig 1D​​).​

​Fig 1.​​Brugia​​mf motility and viability curves for​​single and combined drug treatments.​​(A)​​Schematic​​depicting​
​the methodology and time points of mf motility and viability data collection.​​(B)​​Motility dose response​​curves 24​
​hours and 48 hours after treatment with ivermectin (IVM), diethylcarbamazine (DEC), albendazole sulfoxide (AZS),​
​and emodepside (EMO), with dashed lines showing experimental IC50 (color) and therapeutic plasma C​​max​ ​(black)​
​values. Controls include mf treated with 1% DMSO and heat killed (HK) mf.​​(C)​​Viability (CellTox Green)​​fluorescence​
​readings on a log​​10​ ​scale across treatment concentrations compared to DMSO and HK controls.​​(D)​​Representative​
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​brightfield (top row) and CellTox stained (bottom row) images of control and drug treated mf.​​(E)​​Motility​​dose​
​response curves for drug treatment combinations. IVM treatment combined with AZS (500nM or 10µM) or DEC​
​(15µM or 30µM), and EMO treatment combined with 15µM or 30µM DEC. Drug combination IC50s are marked as​
​solid colored lines and IVM plasma C​​max​ ​values as​​dashed black lines. Individual drug IC50s from (B) are also shown​
​(IVM: purple, EMO: green). Each plot point represents measurements for a plate well containing 1000 mf; each​
​condition was performed across at least four technical replicates (wells) per experiment and each experiment was​
​repeated for at least three biological replicates (parasite cohorts).​

​Environmental conditions alter the detection of IVM effects in mf​

​It has been proposed that host-dependent mechanisms, including changes in parasite​
​secretions, explain the disconnect between​​in vitro​​and​​in vivo​​drug responses observed for​
​macrocyclic lactones such as ivermectin and potentially other antifilarial drugs​​[25,41,42]​​.​
​However, methods to measure drug-induced secretory dysregulation are low in throughput and​
​require large numbers of parasites. We hypothesized that adjusting​​in vitro​​culture conditions​
​could sensitize our image based phenotyping approach to detect drug induced motility​
​phenotypes at pharmacologically relevant concentrations. The excretory-secretory (ES)​
​apparatus responsible for mf secretion plays an osmoregulatory role​​[43–45]​​, and mf undergo​
​shifts in temperature during transmission events that could play a role in priming secretory​
​activity. We therefore tested whether changes in salinity and temperature, cues potentially tied​
​to the physiology and remodeling of the secretory system, modulate observable drug effects.​

​Fig 2. Temperature modulates ivermectin sensitivity of​​Brugia​​microfilarial motility.​​(A)​​Schematic showing​
​methodology and timeline for mf temperature shift assay.​​(B)​​Mean motility, scaled to DMSO 1 hour values​​of​​B.​
​pahangi​​mf at 37℃ (left panel) and room temperature​​(RT, right panel) across time and ivermectin (IVM) or control​
​treatment concentrations (color-coded). P-values represent statistical differences in mf motility between DMSO and​
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​drug treatments at matched time points and temperature and were calculated using Anova/Tukey post-test and​
​significance reported as follows, * : p<0.05, ** : p<0.01, *** : p<0.001. Each plot point represents measurements for a​
​plate well containing 1000 mf; each condition was performed across at least six technical replicates (wells) per​
​experiment and each experiment was repeated for at least three biological replicates (parasite cohorts).​

​Previous reports showing that ivermectin (IVM) directly affects mf protein secretion at​
​sub-micromolar concentrations​​[19–21]​​informed our selection of IVM concentration (1, 10, 50,​
​and 100 nM) to examine acute effects on mf motility at 1, 2, and 4 hr post-treatment under​
​multiple environmental conditions, including temperature (37°C vs. room temperature [RT],​​Fig​
​2A​​) and ionic composition (varying NaCl and KPO₄ concentrations,​​Fig 3A​​)​​.​​We first observed​
​an overall decrease in mf motility at RT across all conditions and time points, while mf motility​
​remained relatively stable over time at 37 °C (​​Fig​​2B​​). This shift to RT enabled consistent​
​detection of IVM effects on mf motility at relevant concentrations. Specifically, IVM (10–100 nM)​
​induced a modest but statistically significant decrease in mf motility across time points. These​
​effects were also evident as morphological differences not captured by optical flow-based​
​quantification of motility​​.​

​Fig 3.​​Brugia​​mf motility in the presence of NaCl and KPO​​4​​salts.​​(A)​​Schematic depicting the salt assay​
​methodology and timeline.​​(B)​​Top two bar graph panels indicate combinations of KPO​​4​ ​concentrations (10mM,​
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​25mM, 50mM, and 100mM) and NaCl concentrations (25mM, 50mM, 100mM, 125mM, and 150mM) across the​
​remaining figure panels at vertically aligned positions. The bottom panel shows DMSO-treated​​B. pahangi​​mf​​motility​
​in the presence of different concentrations of NaCl and KPO​​4​ ​across time points.​​(C)​​The top and bottom​​panels show​
​optical flow differences between DMSO and ivermectin (IVM) treated​​B. pahangi​​mf (delta motility) at varying​​salt​
​combinations in the presence of 50nM (top panel) or 500nM (bottom panel) IVM. P-values representing statistical​
​differences in mf motility between DMSO and IVM treatments were calculated using Anova/Tukey post-test and​
​significance is reported as follows, * : p<0.05, ** : p<0.01, *** : p<0.001. Each plot point represents measurements for​
​a plate well containing 1000 mf; each condition was performed across at least two technical replicates (wells) per​
​experiment and each experiment was repeated for at least three biological replicates (parasite cohorts).​

​We next altered salinity at room temperature to determine whether ionic stress would further​
​enhance our ability to resolve IVM-evoked phenotypes. Relative to RPMI controls, all tested salt​
​conditions reduced mf motility. Low combined concentrations of NaCl and KPO₄ (<50 mM total)​
​produced a pronounced decrease in mf motility across all time points, whereas higher​
​concentrations of either NaCl or KPO₄ (≥100 mM) paired with lower concentrations of the other​
​salt (<50 mM) had a more modest effect (​​Fig. 3B​​).​​Despite these changes, mf displayed​
​substantial tolerance to osmotic variation, remaining motile across a broad range of osmolalities​
​(77–570 mOsm/kg) at all time points (​​S2 Fig​​). Notably,​​altering salinity did not improve detection​
​of IVM-induced effects; instead, elevated salinity masked IVM-dependent reductions in motility.​
​Specifically, IVM effects at 50 nM were obscured across all salt conditions, and effects at 500​
​nM were masked in the presence of high KPO₄ (100 mM) (​​Fig. 3C​​).​

​Age-dependent anthelmintic effects on adult stage parasites​

​While current antifilarial drugs used in mass drug administration effectively clear circulating​
​microfilariae, they do not cause rapid lethality in adult worms, which can persist for years​
​following treatment. We sought to evaluate the sublethal​​in vitro​​effects of established antifilarial​
​drugs on adult female (AF)​​Brugia​​parasites using​​a common phenotypic platform for​
​quantification of motility and fecundity across time points. This analysis was intended to​
​establish baseline adult responses and benchmark our assay conditions against existing​
​literature, while including emodepside (EMO), an emerging antifilarial with reported adulticidal​
​activity, as a comparator.​

​We first established an assay for motility and fecundity (protocol A) and then modified culture​
​conditions to improve recovery of excretory–secretory (ES) proteins for downstream quantitative​
​proteomic analysis (protocol B) (​​Fig 4A​​). This included the removal of serum and phenol red​
​from culture media. Adults are sourced from a jird model of infection with a prepatent period of​
​3-4 months and are extracted across a wide range of ages reflected by months spent in the​
​Mongolian jird host (​​Fig 4B​​). Because motility and fecundity results showed no significant​
​differences between protocols for matched treatments, replicates from both protocols were​
​combined to analyze the effects of IVM, DEC, AZS, EMO, and combined IVM-DEC-AZS (IDA)​
​treatment on these phenotypes. IVM and EMO caused sustained motility suppression through​
​the assay endpoint at 48 hrs post-treatment, whereas DEC caused a transient decrease in​
​motility followed by recovery consistent with previous observations​​[12]​​(​​Fig. 4C​​). AZS had no​
​detectable effect on AF motility over the same period. Combined IDA treatment recapitulated​
​both the acute motility decrease associated with DEC and the longer-lasting, dose-dependent​
​inhibition characteristic of IVM alone.​

​Although these overall drug response patterns were reproducible across biological replicates,​
​we observed variation in motility sensitivity between parasite batches. These differences​
​correlated with adult worm age, estimated by time spent in the mammalian host. More mature​
​adults (>12 months in host) exhibited increased IVM- and IDA-induced motility inhibition,​
​whereas less mature worms (<8 months in host) showed more variable responses, including​
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​partial or complete recovery in some cases (​​Fig 4D​​). This age-dependent modulation of adult​
​phenotypes, particularly for IVM, represents a previously underappreciated variable.​

​Fig 4. Antifilarial effects on​​Brugia​​adult motility​​and fecundity.​​(A)​​Schematic depicting protocols​​used to collect​
​motility, fecundity, and protein samples at specific time points for adult female​​B. pahangi​​. Protocol​​B was optimized​
​for the collection of excretory-secretory proteins. For all fecundity measurements, media was collected and replaced​
​at 0, 24, and 48 hours.​​(B)​​Age distribution of adult​​female worms used in phenotypic assays.​​(C)​​Motility​​responses​
​to IVM, DEC, AZS, IDA, and EMO treatments colored by concentration. Motility values were normalized to baseline​
​motility (time = 0) for each individual parasite represented by the black dashed line. Statistical differences are shown​
​for post-treatment time points compared to 1% DMSO controls at the matched time point via t-test to evaluate​
​decreases in motility.​​(D)​​Motility responses to IVM​​treatments stratified and colored by the age group adult females​
​occupied. For each drug condition and time point, statistical differences between age groups were calculated via​
​t-test.​​(E)​​Fecundity responses to drugs as measured by the quantity of progeny released in the presence of drugs​
​after 24 hours and 48 hours, colored by concentration and normalized to 24 hour 1% DMSO controls. Statistical​
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​significance was calculated via t-test comparing DMSO and drug treated groups at matched time points. P-values​
​throughout figure are reported as follows, * : p<0.05, ** : p<0.01, *** : p<0.001, **** : p<0.0001. 48 hour motility and​
​fecundity data are not shown for 1 μM EMO as all parasites are paralyzed at this timepoint. Plot points in C-E​
​represent wells of 1-2 adult parasites; each condition was performed for at least 4 technical replicates (wells) per​
​experiment and each experiment was repeated across at least three biological replicates (parasite cohorts).​

​Adult female fecundity effects were collected by measuring progeny release 24 hours and 48​
​hours after drug treatment. IVM and EMO inhibited mf release for concentrations tested at both​
​time points, while DEC treatment had no effects on progeny release (​​Fig 4E​​). Interestingly, AZS​
​treatment induced a small (24%) but statistically significant increase in mf release over the first​
​24 hours. Combined IDA treatments led to an overall inhibition of fecundity smaller than IVM​
​alone, likely reflecting the opposing effects of IVM and AZS. Fecundity results remained​
​consistent regardless of the time spent in host. Overall,​​in vitro​​motility and fecundity profiles are​
​complex, with examples of sustained inhibition of motility, recovery, or even enhancement of​
​offspring output. Furthermore, variables like worm maturity impact these results.​

​Anthelmintic-induced changes in the adult female secretome​

​To capture phenotypes more relevant to diagnostics and the host-parasite interaction, we next​
​sought to detect changes in the composition of the adult female (AF) secretome in response to​
​drug. We collected and pooled excretory-secretory proteins (ESPs) at 24 hours and 48 hours​
​post DMSO (1%), IVM (1µM), EMO (250nM) and AZS (100µM) treatments. Media was filtered​
​and proteins (>3 kDa) were concentrated and profiled using NanoLC-MS/MS, resulting in the​
​identification of 88​​B. pahangi​​proteins across samples.​​B. malayi​​orthologs of 55% of these​
​proteins (49/88) were identified in previous adult female proteomic studies​​[46,47]​​and dataset​
​comparisons confirm the high abundance of prominent ES proteins, including triose phosphate​
​isomerase (TPI-1), galectin-2 (Lec-2), transthyretin-like family proteins, phosphopyruvate​
​hydratase (Enol-1), cuticular glutathione peroxidase (Bm2151), and macrophage inhibitory​
​factor (MIF-1). Furthermore, we detected 9 proteins previously reported among the 15 most​
​abundant proteins identified in AF extracellular vesicles​​[20]​​, with four of these proteins (TPI-1,​
​Lec-2, MIF-1, and ACT-5) detected in high abundance in our proteomic dataset. 64% of the​​Bpa​
​proteins were found to have either a classical signal peptide (35%) or an unconventional protein​
​secretion signal (29%), while the remaining proteins were categorized as transmembrane (8%)​
​or intracellular (28%) (​​S2 Table​​). These results align​​with previous secretome analyses, which​
​identified classical or unconventional secretion signals in approximately 54%-66% of identified​
​Brugia​​ES proteins from different stages​​[19,46,47]​​.​

​The overall distribution of protein intensities across replicates suggests that fewer ES proteins​
​were detected in EMO and IVM treatments compared to DMSO or AZS (​​Fig 5A​​). Principal​
​component analysis (PCA) shows distinct clustering by treatment; specifically, DMSO and AZS​
​samples grouped together, while EMO and IVM samples form a separate cluster (​​Fig 5B​​).​
​Normalized protein intensities were used to compare protein abundance across samples and​
​identify differentially expressed proteins (DEPs) for each drug condition compared to DMSO​
​control (​​Fig 5C​​,​​S3 Table​​). This identified varying​​numbers of differentially expressed proteins​
​that met the significance threshold across the three treatment groups. EMO yielded the most​
​extensive list with 29 DEPs (17 up- and 12 downregulated), followed by IVM with 10 DEPs (6​
​up- and 4 downregulated) and AZS with 5 DEPs (3 up- and 2 downregulated).​

​A notable degree of overlap was observed between the IVM and EMO datasets with 9 of the 10​
​proteins identified in the IVM group also dysregulated in the EMO group. This shared signature​
​includes TPI-1, FRM-3, and superoxide dismutase (ortholog of Bm13727). Despite these​
​commonalities, most other DEPs were unique to their respective treatments. The only protein​
​consistently upregulated across all three drug conditions was the cystatin-type cysteine​
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​proteinase inhibitor CPI-2 (ortholog of Bm10669). Both SOD and CPI-2 are known to play​
​critical roles in mediating host-parasite interactions​​[48–51]​​, suggesting that these treatments​
​may trigger common pathways involved in the parasite's defense against host-induced stress.​
​Finally, we investigated whether ES proteins that are up or downregulated in response to drug​
​are associated with or likely to originate from specific tissues. The expression patterns of​
​proteins are not comprehensively mapped across adult​​Brugia​​, so we instead mapped proteins​
​of interest to a single-cell RNA-seq atlas produced using​​B. malayi​​mf​​[52]​​. DEPs are generally​
​broadly expressed and likely to originate from a variety of tissues at these sublethal​
​concentrations of drug (​​Fig 5D​​).​

​Fig 5. Effects of anthelmintics on the adult female secretory profile.​​(A)​​Violin plot representing the log​​2​
​transformed peptide ion intensities distribution of all protein samples analyzed by mass spectrometry​​.​​Five biological​
​replicates (reflecting parasite cohorts) were carried out, each representing secretions pooled from 12 adult females (6​
​wells) for each treatment condition.​​(B)​​Principal component analysis showing variance among replicates,​
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​color-coded by treatment.​​(C)​​Volcano plots representing the p-value and log​​2​ ​fold change (FC) associated with​
​protein intensities 48 hours post 100µM AZS (red), 1µM IVM (blue), and 250nM EMO (purple) compared to 1%​
​DMSO control. Red and grey dashed lines represent p-value < 0.05 and |log​​2​​FC| > 1, respectively. Colored points​
​represent differentially expressed proteins of interest (|log​​2​​FC| > 1, p-value < 0.05, and FDR < 0.05).​​(D)​​Dotplot​
​representing differentially expressed​​B. pahangi​​ES proteins post drug treatment mapped to single-cell gene​
​expression patterns of one-to-one orthologs defined using​​B. malayi​​mf​​[52]​​. Cell annotations associated with cell​
​type clusters are shown at the top (MS: muscle, MD: mesoderm, C: coelomocyte, S: secretory, CA: canal associated,​
​IB: inner body), with dot size reflecting the proportion of cells within that cluster expressing the transcript of interest​
​and dot color reflecting log​​2​​FC of protein abundance compared to DMSO. Differentially expressed proteins unique to​
​each drug condition, as well as those shared between IVM and EMO, are plotted using either treatment-specific​
​log​​2​​FC (unique) or mean log​​2​​FC (shared​​proteins).​

​Discussion​

​A better understanding of anthelmintic effects on parasites remains critical to improving our​
​ability to treat and diagnose filarial diseases, as well as to the discovery of new drugs. Current​​in​
​vitro​​assays often fail to capture the pharmacologically​​relevant effects of drugs used in mass​
​drug administration (MDA). Our initial microfilariae (mf) screening underscored this discrepancy,​
​as ivermectin (IVM), diethylcarbamazine (DEC), and albendazole sulfoxide (AZS) impacted​
​motility at non-pharmacological concentrations, while only emodepside (EMO) recapitulated its​
​efficacy within a therapeutic range. Furthermore, the lack of observable drug synergies suggests​
​that the efficacy of combination therapies like IDA may rely on host-dependent mechanisms​
​rather than direct, additive neuromuscular interference.​

​This study employed deeper​​in vitro​​profiling to reveal​​how environmental variables sensitize​
​parasites to drug action. We demonstrated that temperature significantly modulates mf motility​
​and IVM sensitivity at concentrations better aligned with therapeutic C​​max​​values. However, we​
​found that this drug-induced motility difference can be masked by high KPO​​4​​concentrations. Our​
​working model suggests that elevated extracellular K​​+​ ​may hinder the hyperpolarizing effects of​
​IVM. Because the KPO​​4​ ​application preceded IVM addition​​in our assays, the resulting​
​depolarization state likely rendered low IVM concentrations insufficient to trigger further​
​physiological shifts, highlighting the importance of ionic context in drug-target engagement.​

​Since current anthelmintics fail to eliminate adult filarial parasites in humans and animals, we​
​sought to characterize more cryptic drug effects. These experiments revealed that more mature​
​worms are significantly more susceptible to IVM-induced motility inhibition, potentially because​
​older worms are less physiologically fit or because the drugs differentially impact the mf they​
​harbor. We also observed a surprising fecundity effect with albendazole sulfoxide, which​
​appeared to trigger a transient increase in progeny release at concentrations that elicit no​
​motility effects. Conversely, the transient decrease in motility caused by DEC is not coupled to​
​changes in fecundity, further highlighting the independent action of drugs on these phenotypes.​

​Finally, we used quantitative mass spectrometry to profile shifts in the adult female secretome in​
​response to drug. We found that IVM and EMO treatments cause the dysregulation of several​
​shared and drug-specific secretory proteins, such as SOD and CPI-2, which are expressed​
​across diverse tissue types. Differentially expressed proteins under drug exposure provide new​
​leads that could potentially be leveraged for the development of improved post-drug surveillance​
​tools, provided they are validated in future​​in vivo​​studies. Ideally, combinations of such markers​
​could be utilized to distinguish between parasite stages, assess reproductive activity, and​
​monitor treatment progress. Developing multi-marker signatures may be necessary to ensure​
​that the presence of surviving, active adult parasites can be accurately detected in elimination​
​zones, offering a much-needed increase in diagnostic resolution for monitoring the success of​
​elimination programs.​
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​Materials and Methods​

​Parasite Shipment and Maintenance​

​Brugia malayi​​(​​Bma​​) and​​Brugia pahangi​​(​​Bpa​​) adult​​females (AF) and microfilariae (mf)​
​were provided by the NIH/NIAID Filariasis Research Reagent Resource Center (FR3);​
​morphological voucher specimens are stored at the Harold W. Manter Museum at the University​
​of Nebraska, accession numbers P2021-2023​​[53]​​. Parasites were shipped overnight from the​
​FR3 in RPMI 1640 media supplemented with penicillin/streptomycin (P/S, 0.1 mg/mL). Upon​
​receipt, AF and mf were kept at 37℃ with 5% atmospheric CO​​2​ ​for a 30-45 minute acclimation​
​period before use in assays.​

​Drug Sourcing and Stock Preparation​

​Compounds were sourced as follows: ivermectin (MP Biomedicals, LLC),​
​diethylcarbamazine (MP Biomedicals, LLC), albendazole sulfoxide (Sigma-Aldrich), emodepside​
​(Advanced ChemBlocks, Inc). Stock solutions were aliquoted in DMSO at 100X final​
​concentrations and stored at -20℃ before being thawed for use in experiments. Similarly, stock​
​solutions of 10X NaCl and 5X KPO​​4​ ​were used in mf salinity assays. To make KPO​​4​ ​stocks, 1M​
​K​​2​​HPO​​4​ ​and 1M KH​​2​​PO​​4​ ​were mixed to obtain 1M KPO​​4​ ​at ~pH 7.3 which was used for all​
​subsequent dilutions.​

​Microfilariae Motility and Viability Assay​

​Upon arrival, mf were centrifuged at 800xg for 10 minutes at 20℃ and supernatant was​
​discarded. Pelleted mf were resuspended in 5mL RPMI supplemented with penicillin and​
​streptomycin (RPMI+P/S) and added to a PD10 desalting column (Cytiva) to remove most host​
​cells and parasite embryos following a previously described protocol​​[52]​​. Mf were collected and​
​titered to a density of 10 mf/µL (dose response experiments,​​Fig 1​​) or 14 mf/µL (environmental​
​condition experiments,​​Fig 2​​and​​Fig 3​​) to achieve​​approximately 1000 mf per well.​

​Drugs and mf were aliquoted to 96-well plates per assay conditions. For dose-response​
​and temperature assays, 1 µL of DMSO or drug stock were added to wells prior to the addition​
​of 100 µL of mf. For dose response assays, positive control aliquots of mf were heat killed at​
​60℃ for 1 hour before being added to plates. In temperature assays, to compensate for​
​potential motility loss across the plate during data acquisition, treatments were positioned​
​diagonally across plates (​​Fig 2A​​), and their positions​​were alternated in experiment replicates.​
​For salt experiments, 10 µL of NaCl and 20 µL of KPO​​4​ ​stocks were added to wells, followed by​
​the addition of 70 µL MilliQ-washed mf. Ivermectin and DMSO were then added to wells and​
​plates were gently shaken. All plates were sealed with breathable strips and incubated at 37℃​
​with 5% atmospheric CO​​2​ ​(dose response and temperature​​assays) or at room temperature​
​(RT) in the dark (salt and temperature assays).​

​At motility timepoints described for each assay, mf were imaged using the ImageXpress​
​Nano (Molecular Devices) following a previously described protocol​​[54]​​. The ImageXpress was​
​set to 37℃ and 5% CO​​2​ ​environmental conditions or​​left at RT according to assay incubation​
​conditions. To assess mf viability at 48 hours post drug treatments in dose-response assays, mf​
​were treated with the CellTox Green kit (Promega) and fluorescence was measured using the​
​ImageXpress as previously described​​[54]​​. Motility and viability images were processed using​
​the motility and mf_celltox modules of the wrmXpress​​[35]​​software, respectively. Each assay​
​was repeated with at least three separate shipments of mf (biological replicates).​
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​Adult Female Assay Set Up​

​The adult assay was implemented following protocols A or B (​​Fig 5A​​). In protocol A,​
​parasites were shipped in 50 mL conicals tubes containing RPMI+P/S supplemented with 10%​
​FBS. After brief temperature acclimation at 37℃, media was replaced with pre-warmed​
​RPMI+P/S, and adults were allowed to recover at 37℃ in a 5% CO​​2​ ​environment for 30-45​
​minutes. AF were then transferred to a petri dish, gently untangled, and their fitness was visually​
​assessed based on motility levels and cuticle integrity. Injured or unhealthy worms were​
​discarded and healthy worms of similar fitness were used. Individual AF were transferred to​
​wells of a 24 well-plate containing 750 µL of RPMI+P/S supplemented with 10% FBS. AF were​
​then allowed to acclimate at 37℃ and 5% CO​​2​ ​for 24​​hours, prior to drug treatment. Media​
​without FBS supplement was used for the remainder of the assay. A modified version of protocol​
​A (protocol B) was used to collect secreted proteins. In this protocol, FBS-free media was used​
​in all stages, media lacking phenol red was used for all steps post shipment, and two AF were​
​placed into each well. For both protocols, motility and fecundity samples were collected across​
​four (protocol A) or six (protocol B) technical replicates (wells) per condition and repeated at​
​least three times as follows.​

​Adult Female Motility and Fecundity Sample Acquisition​

​Motility acquisition.​​After 24 hours of acclimation, worms were transferred to a new​
​24-well plate containing pre-warmed media and kept at 37℃ for 10-15 minutes to avoid​
​temperature-dependent motility changes. The first time point (0 hour), was recorded as​
​previously described​​[55]​​followed by drug or DMSO addition. Immediate and 1 hour​
​post-treatment video acquisitions were collected (0.1 and 1 hour, respectively). At 24 hours​
​post-treatment, the AF were transferred to a 24-well plate containing media pre-supplemented​
​with drug or solvent and allowed to acclimate for 10-15 minutes at 37℃ with 5% CO​​2​ ​prior to​
​video acquisition (T=24hr). At 48 hours post-treatment, AF motility was recorded and AF were​
​transferred to a petri-dish for disposal.​

​Fecundity collection and progeny quantification.​​At 0 (acclimation), 24, and 48 hours​
​post treatment, conditioned media from the 24-well plates was collected in individual tubes and​
​centrifuged (800xg) for 10 minutes to pellet progeny. Following centrifugation, 500 µL of​
​supernatant was either discarded or retained for protein analysis. Concentrated progeny in 250​
​µL of media were preserved at 4℃, and 50 µL aliquots were transferred to 96-well plates and​
​imaged using an ImageXpress Nano as previously described​​[55]​​. Motility and fecundity images​
​were processed using a conda optical flow algorithm and Fiji software​​[56]​​.​

​Protein Sample Acquisition​

​Conditioned media from 6 wells, representing ES products from 12​​B. pahangi​​AF were​
​collected at 24 hours and 48 hours post-treatment in individual low-binding protein Eppendorf​
​tubes. Samples were centrifuged to pellet progeny as described above, and 500 µL of​
​supernatant were pooled across technical replicates (6 per treatment), filtered using​
​regenerated cellulose (0.2 µm, Sigma), and stored at -80℃. Samples were thawed and​
​concentrated using a 3kDa centricon centrifugal filter (Millipore-Sigma, Amicon® Ultra​
​Centrifugal Filter), following manufacturer protocol, and washed with phosphate-buffered saline​
​solution (PBS). Concentrated protein samples (~100 µL) from 24 and 48 hours post-treatment​
​were pooled together for each treatment condition. Five replicates were carried out per drug​
​condition. Resulting samples, representing  soluble ES proteins from 12​​B. pahangi​​AF over 48​
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​hours post DMSO, IVM, AZS, and EMO treatment were collected and stored at -80℃ prior to​
​mass spectrometry.​

​Mass Spectrometry of Protein Samples​

​In-solution enzymatic digestion and Mass Spectrometry analysis.​​Secreted proteins were​
​concentrated with TCA/Acetone precipitation and subsequently digested with trypsin and LysC​
​proteases as described previously​​[57,58]​​. Digested peptides were desalted (Pierce™ C18 SPE​
​100µl pipette tips) and loaded on Orbitrap Fusion™ Lumos™ Tribrid™ platform using Dionex​
​UltiMate™3000 RSLCnano delivery system (ThermoFisher Scientific) equipped with an​
​EASY-Spray™ electrospray source (held at constant 50°C). Chromatography of peptides prior​
​to mass spectral analysis was accomplished using capillary emitter column (PepMap® C18,​
​2µM, 100Å, 500 x 0.075mm, Thermo Fisher Scientific) with 46-minute primary gradient from 4 to​
​20% acetonitrile followed by 16-minute secondary gradient from 20 to 30% acetonitrile which​
​concluded with a rapid 5-minute ramp to 76% acetonitrile and 4-minute flush-out. As peptides​
​eluted from the HPLC-column/electrospray source survey MS scans were acquired in the​
​Orbitrap with a resolution of 120,000 followed by HCD-type MS2 fragmentation into Ion Trap​
​(30% collision energy) under ddMSnScan 1 second cycle time mode with peptides detected in​
​the MS1 scan from 350 to 1600 m/z; redundancy was limited by dynamic exclusion and MIPS​
​filter mode ON.​

​Data analysis.​​Analysis was performed to establish relative abundances based on​
​identified peptide ion intensities using Proteome Discoverer (ver. 2.5.0.400) Sequest HT search​
​engine against​​Brugia pahangi​​proteome​​[59]​​(NCBI accession GCA_012070555.1, assembly​
​ASM1207055v1) (14,455 total entries) along with a cRAP common lab contaminant database​
​(116 total entries). Static cysteine carbamidomethylation, and variable methionine oxidation plus​
​asparagine and glutamine deamidation, 2 tryptic miss-cleavages and peptide mass tolerances​
​set at 10 ppm with fragment mass at 0.6 Da were selected. Peptide and protein identifications​
​were accepted under strict 1% FDR cut offs with high confidence XCorr thresholds of 1.9 for z=2​
​and 2.3 for z=3. Strict principles of parsimony were applied for protein grouping.​
​Chromatograms were aligned for feature mapping and ion intensities were used for precursor​
​ion quantification using unique and razor peptides. Normalization was not performed; protein​
​abundance calculations were based on summed peptide abundances and background-based​
​t-testing executed.​

​Proteomic Data Processing and Single Cell Data Comparison​

​Identified​​B. pahangi​​proteins were searched against the​​B. malayi​​NCBI proteomic​
​database and​​B. malayi​​proteins to identify one-to-one orthologs with >80% amino acid identity.​
​Relative abundances were used based on identified peptide ion intensities from all analyzed​
​replicates to conduct proteomic analysis. Raw intensities were log​​2​ ​transformed in R statistical​
​software (v4.2.2)​​[60]​​and normalized with cyclic Loess. Data was then analyzed using​
​reproducibility optimized test statistics (ROTS, v1.26.0​​[61]​​). Resulting log​​2​​FC, p-values and​
​false discovery rate (FDR)-corrected p-values were used to assess differential ESP expression​
​post anthelmintic treatments. Protein sequences were used to determine the presence of signal​
​peptides using the computational tool outcyte​​[62]​​.​

​Previously published single-cell transcriptomic data from​​B. malayi​​microfilariae were​
​sourced from a previous study​​[52]​​. The data were filtered to include only untreated cell​
​populations (“utBM”) and genes with a normalized gene expression count greater or equal to​
​two. The R statistical software (v. 4.2.1)​​[60]​​and Seurat single-cell software (v. 4.3.0.1)​​[63]​​,​
​were used to generate a dot plot of transcript expression across annotated and unannotated cell​
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​types with overlapped protein expression values from the proteomic data generated here. The​
​percent of cells within a cluster expressing a transcript of interest was calculated using the​
​DotPlot() function in Seurat (dot size).​
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​Supplementary Figures​

​S1 Fig. Species-specific dose-responses for mf motility and viability​​. Panels (A) and (B) display motility​​curves​
​for single drugs (IVM, AZS, DEC, EMO) and their combinations at 24 and 48 hours, while (C) and (D) show the​
​corresponding viability fluorescence readings. Color represents different​​Brugia​​species and dashed lines​​represent​
​experimental IC50 values (colored) and therapeutic C​​max​ ​values (black). DMSO (vehicle) and heat-killed​​(HK) controls​
​are depicted for each phenotypic assay.​
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​S2 Fig. Motility of DMSO-treated​​B. pahangi​​microfilariae​​across varying osmolalities​​. Motility stratified​​by​
​osmolality calculated for NaCl and KPO​​4​ ​salt combinations.​​Colors indicate specific time points.​
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​Supplementary Tables​

​S1 Table. IC50 values for microfilariae dose response curves.​​Numerical IC50 values for a given​
​treatment and time point calculated for​​Brugia​​species​​individually (as shown in S1 Fig) or combined (as​
​shown in Fig 1).​

​S2 Table. Adult female ES proteomic data.​​Raw peptide​​ion intensities for all detected​​B. pahangi​​ES​
​proteins are provided across the five individual replicate drug and vehicle treatments: DMSO, AZS, IVM,​
​and EMO.​​B. pahangi​​proteins are mapped to one-to-one​​B. malayi​​orthologs and available gene​
​annotations. Outcyte-based analysis and scores were used to identify proteins with classical signal​
​peptide, unconventional signal peptide (UPS) and to classify the remaining proteins as transmembrane or​
​intracellular proteins.​

​S3 Table. Differentially expressed ES proteins.​​List​​of​​B. pahangi​​proteins and their​​B. malayi​​orthologs​
​that were identified as differentially expressed in drug conditions compared to DMSO vehicle. Available​
​gene annotations are provided along with log​​2​​FC, p-values,​​and FDR derived from ROTS analysis.​

​Data Availability Statement​
​All data and scripts used to process data originating from image-based phenotypic profiling and​
​proteomic datasets are available at IDEA-ms.​
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