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Abstract

Schistosomiasis is one of the most important and widespread neglected tropical diseases

(NTD), with over 200 million people infected in more than 70 countries; the disease has

nearly 800 million people at risk in endemic areas. Although mass drug administration is a

cost-effective approach to reduce occurrence, extent, and severity of the disease, it does

not provide protection to subsequent reinfection. Interventions that target the parasites’

intermediate snail hosts are a crucial part of the integrated strategy required to move toward

disease elimination. The recent revolution in gene drive technology naturally leads to ques-

tions about whether gene drives could be used to efficiently spread schistosome resistance

traits in a population of snails and whether gene drives have the potential to contribute to

reduced disease transmission in the long run. Responsible implementation of gene drives

will require solutions to complex challenges spanning multiple disciplines, from biology to

policy. This Review Article presents collected perspectives from practitioners of global

health, genome engineering, epidemiology, and snail/schistosome biology and outlines

strategies for responsible gene drive technology development, impact measurements of

gene drives for schistosomiasis control, and gene drive governance. Success in this arena

is a function of many factors, including gene-editing specificity and efficiency, the level of

resistance conferred by the gene drive, how fast gene drives may spread in a metapopula-

tion over a complex landscape, ecological sustainability, social equity, and, ultimately, the

reduction of infection prevalence in humans. With combined efforts from across the broad

global health community, gene drives for schistosomiasis control could fortify our defenses

against this devastating disease in the future.
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Introduction

Gene drives, or the purposeful spread of desired alleles throughout a population to control or

modify populations of pests [1] or intermediate hosts for disease, are rapidly being developed

in research laboratories [2–5]. Extensive literature exists about the molecular feasibility, eco-

logical ramifications, and bioethics of such approaches [6,7], with most of the research effort

focused on arthropods, in particular, mosquitoes that are vectors of important human diseases

such as malaria and dengue fever, whereas gene drive application to other intermediate hosts

is less widely discussed.

Key Learning Points

• The modification of natural snail populations by means of gene drives could assist in

the fight against schistosomiasis prevalence and transmission.

• Although molecular tools are available for the production of genetically modified

snails through genome editing, they need to be adapted to Biomphalaria glabrata.

• Mathematical modeling of gene drives and disease dynamics can provide key under-

standing in the potential for success of gene drive–based intervention to control

schistosomiasis.

• Gene drives have the potential to influence the global schistosomiasis disease burden,

allowing for adjustments in future chemotherapeutic needs and alternative elimination

efforts.

• Responsible ethical governance for schistosomiasis transmission control through gene

drives is needed and could draw on existing frameworks for genetically modified mos-

quitoes and Mass Drug Administration.

Top Five Papers

• Abe M, Kuroda R. The development of CRISPR for a mollusc establishes the formin

Lsdia1 as the long-sought gene for snail dextral/sinistral coiling. Development. 2019

May 1;146(9):dev175976.

• Dong Y, Simões ML, Marois E, Dimopoulos G. CRISPR/Cas9 -mediated gene knock-

out of Anopheles gambiae FREP1 suppresses malaria parasite infection. PLoS Pathog.

2018 Mar;14(3):e1006898.

• Woolhouse WEJ. On the application of mathematical models of schistosome transmis-

sion dynamics. II. control. Acta Trop. 1992 Feb; 50(3): 189–204.

• Sturrock RF. Schistosomiasis epidemiology and control: how did we get here and

where should we go? Mem Inst Oswaldo Cruz. 2001;96:17–27.

• Kofler N, Collins JP, Kuzma J, Marris E, Esvelt K, Nelson MP, et al. Editing nature:

Local roots of global governance. Science. 2018 Nov 2;362(6414):527–9.
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Mollusks, in particular, snails and slugs, can be important intermediate hosts of many para-

sitic worms of medical importance: they pose risk for human health and may cause relevant

socioeconomic burden in the most vulnerable populations [8] living in subsistence economies

and lacking access to clean water and healthcare. Mollusks can be intermediate hosts of both

human diseases (such as schistosomiasis, angiostrongyliasis, opisthorchiasis, clonorchiasis,

and paragonimiasis) as well as animal diseases of agricultural and economic importance (such

as fascioliasis). Of these, schistosomiasis is the most predominant snail-borne disease, with 779

million people at risk for infection and 207 million individuals in 74 countries being infected

[9]. Mollusks could be amenable to population control or modification through gene drives

but require tailored molecular and ecological approaches; this is a result of their substantial

biological differences compared with arthropods [10], to name a few: (1) many mollusks are

simultaneous hermaphrodites that can self-fertilize in the wild and exhibit wide species-spe-

cific variations in reproductive preferences and generation times [11], (2) mollusks may

inhabit both terrestrial or aquatic ecosystems, (3) some mollusks can aestivate (a type of hiber-

nation) in times of stress [12], and (4) some parasites can cause parasitic castration in mollusks

[13]. These differences will cause gene drives targeted at different aspects of mollusk biology

(e.g., reproduction, resistance) to behave in a potentially different way than those promulgated

in arthropods. In this review, we discuss the necessary molecular, modeling, and regulatory

steps to determine the potential relevance and impact of gene drives, focusing on the most

widely distributed and well-studied of snail vectors, Biomphalaria glabrata, a host of Schisto-
soma mansoni, as a gene drive model (Fig 1). We call for further input from the community

and provide a foundation upon which to continue the discussion. We provide supportive evi-

dence suggesting that the development of gene drives for B. glabrata could be technologically

feasible in the near future and that gene drives could provide untapped opportunities for the

control of the intermediate host of schistosomiasis. We emphasize that more data and models

are required to make evidence-based predictions of the context-specific outcomes of such gene

drives and that structured stakeholder engagement, starting now, will be key to guide the

responsible development of this potentially transformative tool for schistosomiasis transmis-

sion control.

The snail intermediate hosts of schistosome parasites

Freshwater snails serve as obligate intermediate hosts in the life cycle of all schistosome species,

within which asexual reproduction of intramolluscan developmental stages of the parasite

results in a drastic expansion of larval schistosome populations. The snail-infective parasitic

stage, the miracidium, hatches in the environment from an egg passed in human stool or urine

and must find a suitable snail host within hours to begin its development within snail tissues

[14]. Through an asexual reproductive process, a single miracidium entering a snail transforms

into a mother sporocyst that is capable of generating many successive, intramolluscan larval

stages, culminating in the production and release of hundreds to thousands of free-swimming

human-infective cercariae per day into the water. B. glabrata is one of the primary models

used to study these intermediate hosts. Biomphalaria spp. are native to the neotropics and

become sexually mature at approximately 4 to 6 weeks of age. They are freshwater animals that

have adapted to a range of conditions, such as flowing and standing water, where they can be

found at a variety of depths and from tropical to arid environments [15,16]. Unsuitable habi-

tats include marine environments, salt marshes, or locations with fast-flowing water [17,18].

Snails can survive drought over a sustained period of time with differences across species: for

example, in areas with an annual dry season, Biomphalaria spp. snails have been known to sur-

vive for 5 to 7 months under mud or other sheltered areas by aestivating [15], thanks to
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adaptive regulation of their metabolic and respiratory activities [12,15,19]. The B. glabrata
genome has been sequenced and provides a critical resource to better study its biology, espe-

cially components that contribute to snail immunity, and enables new technologies to pave the

way for genome editing and gene drives [20]. Although B. glabrata is a known model species

to study schistosomiasis, it is important to note that there are distinct species in the snail phy-

logeny that serve as intermediate hosts. This means it is likely not possible to apply a method

to all snails based on a single species. There are 4 snail genera that comprise the majority of

intermediate host species of schistosomes worldwide: Biomphalaria, Bulinus, Oncomelania,

and Neotricula [14]. B. glabrata is a snail in the gastropod subclass Heterobranchia and family

Planorbidae [21] and provides a model for the many Biomphalaria species that transmit S.

mansoni. B. glabrata can likely also be a model for Bulinus spp., which are also planorbids. It is

Fig 1. Traffic light model for the development of an antischistosome gene drive in snails. Model for the responsive

technology development strategy is discussed in this review. At stage 1, research is small scale and takes place in secure

laboratories. Data are communicated widely and can lead to further experimentation or, potentially, advancement to stage 2.

These controlled field trials incorporate efforts from additional disciplines, including ecological impact modeling and public

health, and depend on broad stakeholder engagement. As before, data are broadly disseminated, leading to iteration or potential

advancement to stage 3. Regional transmission control depends on the previous alliances as well as coordination with co-

occurring public health strategies such as MDA and international strategies by groups such as WHO. MDA, mass drug

administration; NGO, nongovernmental organization; WHO, World Health Organization.

https://doi.org/10.1371/journal.pntd.0007833.g001
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less likely that B. glabrata will inform relevant methods of Oncomelania and Neotricula snails

that belong to a different gastropod subclass, Caenogastropoda [21]. In short, additional

research efforts will be needed to adapt relevant methods for these distinct types of snails.

Most snail–parasite relationships are highly specific, especially those involving schistosomes,

and the variety in taxonomic compatibility complicates control efforts [22]. For example, some

snails can host S. haematobium or S. bovis from regions in South, West, and East Africa, whereas

these snail species cannot host the same schistosome species found in regions of Egypt and the

Middle East [23,24]. Schistosomiasis is not exclusively limited to tropical countries in Africa, Asia,

and South America [25–27], but it has also been found in Europe, with hybrid schistosomes caus-

ing urogenital schistosomiasis hosted in snails with habitats in France, Germany, and Italy [28–

30], thereby introducing a new array of climate-related considerations [31].

Past and current methods of intermediate host control

In the past, a variety of approaches for snail control has been used, including infrastructural,

chemical, and biological interventions [25]. Japan was the first country to completely eliminate

schistosomiasis thanks to a comprehensive, multifaceted strategy: at first, snails were found

and killed by hot water and flamethrowers (a technique later replaced by the use of mollusci-

cides); the land was modified to minimize exposure of humans to snail-rich areas (e.g.,

through cementing water canals in agricultural fields); hygiene education served to minimize

water contamination by feces; and irrigation canals were cemented to reduce the availability of

water sources that served as good snail habitat [32]. The mechanization of agriculture allowed

Japan to reduce reliance on oxen as a production animal, thus reducing the abundance of oxen

as alternative definitive hosts of S. japanicum [33]. Other physical methods, such as controlling

natural water flow, have been used to decrease schistosomiasis transmission (comprehensively

reviewed elsewhere [34]). Reported success stories elicit an important lesson: only through a

combination of different strategies, e.g., biomedical interventions combined with environmen-

tal strategies to interrupt transmission, such as molluscicide use or water, sanitation, hygiene

(WASH) initiatives [35], has localized elimination been achieved. Interestingly, a recent study

analyzed the effectiveness of using vector control or the antischistosomal drug praziquantel, or

both, on reducing schistosomiasis prevalence. After conducting a global assessment of these

methods and their combination, it emerged that snail control, alone or in combination with

other strategies, proved to be the most effective in reducing schistosomiasis prevalence [25].

One of the most widely used techniques for snail control has been the application of mollus-

cicides, with the most common chemical molluscicide being niclosamide [36]. Molluscicides

are compounds that are toxic to snails and that have been shown to reduce snail populations

when applied in bodies of water or on muddy surfaces [37–39]. Although effective, mollusci-

cides are associated with significant drawbacks: their effects are often not strictly specific to

snails, and because of their impact on animals such as fish and amphibians, they require spe-

cific dosage calculations to minimize off-target effects [40]. Other drawbacks to using mollus-

cicides include their lack of residual killing effect, which results in the inevitable recolonization

by snails and the need for multiple applications that increase the cost of deployment

[10,22,41]. There is evidence for unintended knock-on effects, such as the slower decomposi-

tion of snail cadavers by flies when snails have been treated with molluscicides [42]. Alterna-

tives to synthetic chemical molluscicides are natural snail-killing compounds such as salts,

latex, or plant-derived saponins [43–46], which can alleviate the high cost associated with

chemical molluscicides by being locally sourced.

Chemical methods for control can be effective, but the potential detrimental effects on the

environment and their high cost can make them an unattractive option [34,47]. Biological
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methods for the control of the intermediate snail hosts, including the use of snail competitors,

bacterial pathogens of snails, or predators such as fish or prawns, provide a potential alternative

[48–51]. However, these methods may also have unintended off-target effects on local fauna and

flora, especially if exotic agents are introduced [48–51]. For example, a potential biological control

method using cyanobacteria as a molluscicide has been tested but was toxic to nonvector snail

species [52]. Other biological control methods have risks, such as using a highly invasive snail

where replacement of a native species [48,49] may have unintended consequences on the ecosys-

tem. In Senegal, a native, freshwater migratory prawn (Macrobrachium vollenhoveni) was reintro-

duced after its unintended extirpation following the construction of the Diama dam to control

snail populations through predation in experimental settings and resulted in both a significant

reduction of the infected snail population and schistosomiasis prevalence in the area [53]. How-

ever, artificially maintaining high abundances of biological control agents to effectively reduce

snail density often presents formidable challenges, especially if scaled up to wide geographical

areas, and the risks of negatively impacting the natural environment may sometimes outweigh the

benefits of employing biological control methods. Two things are abundantly clear from the previ-

ous review of snail control strategies: (1) reducing snail populations can have a direct and positive

impact on local human infection prevalence (and presumably intensity), and (2) currently avail-

able snail control approaches are not sustainable in the long term.

Gene drives for intermediate host control

In view of the shortcomings of snail control methods outlined previously, new approaches to

interrupting schistosome transmission at the intermediate host stage are needed. With recent

technological advances in genome editing, it may now be possible to genetically modify natural

snail populations using gene drives. Intermediate host control via gene drives relies on the

super-mendelian inheritance of engineered traits in sexual reproduction (reviewed elsewhere

[54]) and is broadly divided into 2 main categories: population suppression and population

replacement. Population suppression drives are designed to crash a population and can utilize

a number of different strategies such as the Maternal effect dominant embryonic arrest

(Medea) system [1], a driving endonuclease gene (DEG) that results in sterility [2,3], or a DEG

that causes sex-biasing in reproduction [55,56]. Population replacement drives, on the other

hand, can also use a toxin–antidote design [57] or DEGs to drive resistance alleles throughout

a population [4,58]. If the DEGs or driven alleles do not confer too large of a fitness cost, they

can eventually be driven to fixation in the population, effectively replacing the wild-type popu-

lation with a resistant population.

Population suppression drives

Population suppression drives are the most advanced for the control of arthropod intermedi-

ate hosts that transmit parasites like Plasmodium spp., the protozoa responsible for malaria,

but face particular challenges when being applied toward schistosomiasis control. Schistosome

intermediate hosts of the genera Biomphalaria and Bulinus, which are simultaneous hermaph-

rodites that can self-fertilize in the wild [59], would thus be refractory to gene drive sex-biasing

but would be amenable to alternative gene drive approaches for population suppression; on

the other hand, Oncomelania spp. snails are dioicious and would be amenable to all of the

aforementioned. Simultaneous hermaphroditism could thwart sex-biasing drives, so popula-

tion suppression through a Medea system or an underdominant genetic load drive is better

suited for schistosome intermediate hosts, as these approaches result in the death or decreased

fitness of heterozygotes and enable the survival of homozygotes, which continue to pass on the

driven element through self-fertilization or outcrossing [60,61]. Population suppression drives
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rely on the specific targeting of genes that are essential for reproduction or development, and

thus, their implementation would require the identification and validation of such genes in

schistosome intermediate hosts. These targets could be discovered via reverse genetic screens,

which have been successful in other model and nonmodel organisms. RNA interference

(RNAi) has been successfully used in B. glabrata [62,63], but to identify genes essential in

development, this technique needs to be adapted for embryonic and egg-stage snails.

Population replacement drives

In contrast, population replacement drives (Fig 2) for schistosomiasis control can build on a

broader base of preexisting knowledge. B. glabrata boasts a rich history as a model for inverte-

brate immunology, and much is known about the genetic basis of host–parasite compatibility

in this system [64,65]. The availability of strains that differ in their susceptibility to schistosome

infection [65–67] could provide leads for a population replacement strategy, and work is

underway to identify loci that may confer schistosome resistance in lab-derived and wild iso-

lates of B. glabrata [68–72]. Though host–parasite compatibility is a complex phenotype, there

are several genes already known to be involved in pathogen recognition and/or associated with

parasite resistance, including fibrinogen-related proteins [63,73–75], thioester-containing pro-

teins [76], and Toll-like receptors [77,78], and enzymes involved in parasite killing mediated

Fig 2. Snail gene drive schematic. A gene drive with the goal of replacing wild populations could be modeled similarly to drives under development in arthropods—

given a high enough transmission rate and a low enough fitness cost, a trait can eventually be driven to fixation. However, in hermaphroditic snails like Biomphalaria
glabrata and other schistosome-transmitting intermediate hosts, the ability to self-fertilize needs to be taken into account. Most schistosome-transmitting snails can

perform both self- and cross-fertilization, but preferences by distinct species or strains have been observed, and these will need to be considered in future modeling and

implementation efforts. Potential cross-fertilization between 2 wild-type and 2 modified snails is not shown.

https://doi.org/10.1371/journal.pntd.0007833.g002
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by reactive oxygen species [68,79–84]. Recently, a genomic region, the Guadeloupe Resistance

Complex (GRC), has been shown to contain alleles that are associated with resistance in exper-

imentally evolved lines of B. glabrata [72]. The GRC is a<1 Mb region that contains a domi-

nant allele that confers an 8-fold decrease in infectivity. In total, this region contains 15 coding

genes, including 7 transmembrane proteins with possible roles in parasite recognition, which

could be further characterized to identify the protective mechanism and relevant gene (or

genes) involved. As suggested by the discoverers of the GRC, this dominant allele could be

coupled to a CRISPR-mediated gene drive and spread through wild snail populations in order

to confer resistance to parasitic infection [72].

Beyond naturally occurring alleles as potential candidates for a population replacement

drive, one can imagine the engineered expression of synthetic elements, such as parasite–toxic

miRNAs or neuropeptides, to help fight off infection and/or prevent development of the

human-infective cercarial stage. RNAi screens of pertinent intramolluscan schistosome stages

could reveal essential genes for parasite persistence and development, and targeting these via

the transgenic expression of siRNAs could be a parasite control strategy [85].

Overexpression or knockout of one or a number of these candidates may bolster snail

defense to schistosomes and, ultimately, improve public health. New data from genetic

approaches are improving our molecular-level understanding of snail–parasite interactions,

but it remains difficult to link resistance traits to single genes. Arguably, the precise mecha-

nism of a given resistance allele need not necessarily be fully understood in order to be effica-

cious in engineered snails. However, available knowledge of off-target or epistatic effects of an

engineered allele must be taken into consideration during strain engineering, and improved

molecular characterization of these candidate genes will only increase the likelihood of their

safe and efficacious application in population replacement gene drives.

Importantly, replacement drives decrease the intermediate host’s parasitic load without

crashing the snail population and therefore may be expected to largely avoid ecological conse-

quences on, for example, the snail’s predators or the forage base.

The introduction of population replacement strategies requires careful analysis of the asso-

ciated fitness costs that parasite resistance might have on gene drive–carrying populations. For

instance, artificially selected resistant B. glabrata have been shown to exhibit reduced fertility,

regardless of parasite infection status [86], whereas infected snails exhibit castration or reduced

fecundity after parasite infection [87,88]. Assessing the interplay of these traits and their conse-

quence on the fitness of snails with the driven allele is therefore key to comprehensively evalu-

ating the feasibility of population replacement gene drives for schistosome intermediate hosts

(see “Impact Modeling”).

Developing the snail genome engineering toolbox

The previous discussion remains theoretical as long as the necessary molecular tools to develop

these types of gene drives, such as germline transgenesis and active DEGs, are not adapted to

schistosome intermediate hosts. CRISPR-Cas9 could be adapted in B. glabrata, as it has been

used in the related mollusks Crepidula fornicata [89] and a trematode vector Lymnea stagnalis
[90]. Germline transgenesis has also recently been achieved in the bivalve mollusk, Crassotrea
gigas, through the piggyBac transposon system and sperm-mediated gene transfer [91]. Con-

currently, promoters that are active in the germline will need to be identified and used to drive

expression of the gene drive components such as Cas9 and its guide RNA (gRNA). One advan-

tage in using B. glabrata as a model for this work is the availability of the only Lophotrochozoa

(the superphylum that houses gastropod mollusks) immortalized cell line, the B. glabrata
embryonic (Bge) cell line. Although this cell line was established nearly 50 years ago (and by
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this point is highly diverged from B. glabrata [92–94]), it may prove useful to study the deter-

minants of CRISPR genome editing outcomes in snail cells, including the mechanisms of snail

DNA repair pathways. If CRISPR-Cas9 is the DEG technique of choice, the cell line will also

aid in identifying and validating CRISPR gRNAs and in optimizing the parameters for the

endogenous homology-directed repair process that copies the driven gene to a homologous

chromosome. Although it has been rarely utilized, transgenesis has been described in this cell

line [95–97], allowing for screening of promoters and gRNAs. Once the snail genome engi-

neering toolbox has been developed, there will be challenges to translate this to the field,

including, but not limited to, environmental safety and biosafety assessments, regulatory

requirements, and strong public support (addressed here in the section “Stakeholder consider-

ations and ethical implications” [98,99]).

Modeling the potential epidemiological impact

A population-modifying gene drive has the potential to reduce or (when used concurrently

with existing treatments) eliminate schistosomiasis locally. However, knowledge on its

potential efficacy is limited. Further understanding is required as to how introduction could

change the local genetic landscape for snail species and whether possible negative changes

could be outweighed by expected improvements in human health. In this context, as in many

others, mathematical modeling can be used to explore the utility of this new strategy in a sys-

tem with complex behaviors and thereby provide the scientific basis for ethical and political

considerations.

Key to determining the success of any intermediate host control strategy is finding a reliable

metric for human health. A typical means to quantify disease burden and a change thereof has

been the concept of disability-adjusted life years (DALYS) [100]. Disability is an important

concern for the NTD community, including those affected by or working to reduce schistoso-

miasis. However, the disagreements and controversies about the correct DALYs to be attrib-

uted to schistosomiasis over the recent years since the Global Burden of Disease Study in 2010

indicates just how difficult it is to quantify disease impact [101,102]. Estimates of the global

burden of schistosomiasis have thus ranged from 1.7 million DALYs to as many as 56 million

DALYs, depending on the disease prevalence levels applied and the morbidities (and their

associated disability estimates) included in the calculations [103]. Furthermore, because many

regions endemic for schistosomiasis are also coendemic with other diseases, it is difficult to

attribute exact causes of disability and the downstream socioeconomic impact [100,101]. Most

importantly, DALYs are based on prevalence and not intensity of infection, whereas pathology

in schistosomiasis is invariably associated with the rate of egg production, a function of the

number of mated worms. When assessing the impact of gene drive–based control, it will be

thus preferable to use reduction in infection intensity as measured by egg count in urine and

stool [104,105]. Further indications that could help to demonstrate the impact of gene drive–

based control include reinfection rates in populations that have previously undergone treat-

ment, as well as infection rates in children not previously infected. Fewer new infections and

reduced infection rates would suggest that gene drive–based control was indeed successful in

interrupting the schistosome lifecycle. Moreover, depending on the gene drive strategy

employed, either a reduction in cercaria-shedding snails or a reduction in snail prevalence will

also indicate success of the intervention.

More research looking into how different levels of infection intensity translate into morbid-

ity, including stunting, anemia, malnutrition, and reduced cognitive and work performance is

essential [106]. Measurement of nonhealth effects, such as fatigue and school attendance, can

also serve to evaluate long-term success of morbidity control activities [107–109].
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In contrast to the theoretical and empirical foundations that exist to explain schistosome

disease dynamics, there is no clear understanding of the dynamics of gene drives in a wild pop-

ulation. A few recent studies have modeled general gene drive behavior [110,111], but the need

remains to understand gene drive behavior and impact in schistosomiasis before implement-

ing it as a tool to control the disease. Here, we use the classic framework presented by Mac-

Donald [112] and reiterated by Woolhouse [113], adding a single term (ρ = proportion of

snails resistant to infection) to include the effect of engineered resistance to infection in snails

on schistosomiasis transmission dynamics (see S1 Appendix). We use this model to illustrate

the qualitative behavior of transmission patterns as a result of a successful introduction of

engineered resistant snails. In Fig 3, we show how transmission and adult worm burden (prev-

alence and intensity) vary over a 10-year time period of moderately successful introduction

and how transmission and adult worm burden vary with introduction success after 10 years.

This simple simulation provides us with a qualitative understanding of how, on average,

successful introduction of these snails may reduce schistosomiasis in endemic regions. When

transmission rates are reduced, humans with the most intense infections could experience the

most dramatic percent reduction in infection intensity because of the natural mortality of

adult worms. This feature, along with the uneven distribution of adult worms in the human

population, explains why the reduction in prevalence of schistosomiasis in humans occurs

more slowly than the reduction in intensity of infection. Hypothetically, the disease will be

locally eliminated when all adult worms have perished if the engineered snails maintain 100%

efficiency in removing potential intermediate hosts from the environment. Because the longev-

ity of the adult worms can be several years to decades (see S1 Appendix), parasite reduction

proceeds slowly with snail or environmental intervention alone and will occur on the order

illustrated in Fig 3. Current anthelmintic treatment is necessary for faster elimination. Under

Fig 3. Simulated impact of engineered snail release on worm burden in humans. Reduction from endemic equilibrium in infection intensity (as measured by

per human egg shedding rate, approximately, wt), prevalence of infection in humans (Ot), and effective reproductive number (Rt) of the schistosomes. (A)

Percent reduction over 10 years when engineered snails are maintained at 50% frequency (ρ = 0.5) in the population. (B) Percent reduction after maintaining

engineered snails at frequency ρ for 10 years.

https://doi.org/10.1371/journal.pntd.0007833.g003
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reasonable conditions, given this framework and its associated assumptions, successful imple-

mentation of engineered snails could have measurable impact in endemic regions. The con-

cavity of the curves in Fig 3 illustrates that reduction in prevalence and intensity of infection

occurs at low frequencies of engineered snails, with diminishing returns at higher frequencies.

This behavior indicates that achieving high frequencies of the engineered variant may not be

necessary to see measurable reduction in disease burden.

Panel A in Fig 3 illustrates a scenario in which drive introduction is 50% efficient in remov-

ing potential intermediate hosts from the environment. Inefficiency can occur either by failure

of the drive construct to reach 100% frequency or by failure of the construct to promote 100%

resistance to infection in snails. Several factors have the potential to inhibit success. For exam-

ple, unlike mosquito manipulation in malaria control efforts, gene drives in schistosomiasis

control will be challenged by the ability of the snail host species to self-fertilize. It is not clear

how the tendency to self-fertilize in these snails will affect the ability of an engineered variant

to establish in a natural population and have meaningful impact on disease transmission. Like-

wise, with population replacement approaches, the success of an engineered variant may

depend on the occurrence of natural resistance in the local snail population. Snail population

sizes in many schistosomiasis-endemic areas are subject to natural fluctuations according to

aquatic habitat availability that changes with precipitation, hydrological dynamics [114], and

the physicochemical characteristics therein [115]. Incorporation of realistic spatial and tempo-

ral population dynamics is essential for a model to give accurate predictions of the frequency

changes of engineered variants and of schistosome transmission rates between snails and

humans. Finally, because snail vectors of schistosomes also serve as intermediate hosts of other

trematode species, frequently in coinfections [116], the influences of such interspecific trema-

tode interactions on schistosome survival may not be predictable in genetically modified

snails. These considerations illustrate the need for comprehensive modeling and empirical

tests to inform any efforts to introduce engineered snails in endemic areas [117].

Currently, ongoing activities that are part of the morbidity control and elimination strate-

gies as outlined by the World Health Organization (WHO) are preventive chemotherapy by

means of mass drug administration (MDA), WASH activities, hygiene education, and snail

control [118]. Understanding how the dynamics and pace of disease reduction can be influ-

enced by the additional control measure of gene drives would be important to better forecast

future chemotherapeutic needs and duration of elimination activities. The converse is also

true: it is imperative to account for ongoing control activities to inform gene drive–based con-

trol efforts. For example, ongoing control efforts can influence immunity of the human host,

habitat suitability for snails, or schistosome–snail infection dynamics [119–128], which should

be included in models. These models can predict meaningful impact by comparing reduction

in morbidity and schistosomiasis prevalence with and without gene drive intervention. These

models can also elucidate interactions and outcomes of a multifactorial schistosomiasis elimi-

nation strategy that potentially includes gene drives as a new tool [129].

To enable the implementation of gene drives in schistosomiasis intermediate host control,

many technological advances are required. However, such scientific progress cannot be viewed

in isolation and requires researchers, policy makers, and other stakeholders to also consider

ecological and ethical implications.

Stakeholder considerations and ethical implications

Gene drives in wild populations have raised significant ethical challenges [130]. The National

Academies of Science, Engineering, and Medicine (NASEM) have emphasized the importance

of an interdisciplinary perspective on gene drive research that explicitly attends to complex
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human values and the necessity of the community, stakeholders, and public engagement to

accompany technical research and development [130]. Although decision-making involves

risk assessment, the prevailing uncertainties of genome engineering technology in snails and

other organisms and its behavior in the wild impede accurate risk/benefit analysis [131].

Therefore, some have emphasized the need to allow for sufficient time to develop amendments

to current regulatory frameworks [132].

While research is ongoing, and governance structures take shape, a thoughtful engagement

plan should be included that considers relevant communities, stakeholders, and the global

public throughout the process, from early research and development through—if applicable—

the release and monitoring of modified organisms in the environment. Target Malaria, a not-

for-profit organization currently developing a gene drive to control malaria-transmitting mos-

quitoes, provides one example, with a dedicated stakeholder engagement team at each of its

African locations: Burkina Faso, Mali, and Uganda [133]. These teams engage stakeholders at

all levels, from the local villages where entomological collections are performed to the interna-

tional level. However, although such engagement efforts have been welcomed by many stake-

holders, they have not been without controversy: accusations of politicization of the process

and fears of unintended effects by local stakeholders serve as a warning against technocratic

solutions [134,135]. Thus, such challenges and fears should be carefully weighed by gene drive

researchers and supporters, and public opinion should be monitored and valued throughout

the process.

Using these precedents, the governance and implementation of public engagement for

schistosomiasis transmission control through a gene drive might be structured in one of the

following ways: MDA-based governance, mosquito control–based governance, and hybrid

model.

MDA-based governance

Partnerships could be integrated with the governance system that is in place for MDA and

existing disease control programs. Field research with gene drives will involve Institutional

Review Boards (IRBs) and Ministries of Health, whose responsibilities are to foster advance-

ment with dedicated technical working groups. Engagement of the local community could be

achieved through existing groups that distribute MDA and encourage WASH compliance.

Mosquito control–based governance

Alternatively, the guidance framework for the testing of genetically modified mosquitoes

developed by WHO’s Training in Tropical Diseases (WHO-TDR) or the lessons gleaned from

other efforts in releasing modified mosquitoes could be adapted for testing and releasing

genetically modified snails [136,137]. WHO-TDR advises that the ethics and engagement com-

ponents of a genetically modified mosquito research program take place at multiple levels of

the study’s trial and regulation, emphasizing the need to have all levels addressed concurrently

(Fig 1). The framework further outlines that (1) each country has its own sovereign regulatory

process, but overarching international agreements or treaties may also be relevant, and (2)

early interaction with regulators is advised in order to identify the appropriate regulatory

pathway.

Hybrid model

An alternative approach is the use of a hybrid model that draws upon a combination of current

MDA governance and newer models established for the regulation of research and release of

genetically modified mosquitoes. This hybrid model would allow for coordinated overlap
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between MDA and snail study/release where appropriate (so as to not “reinvent the wheel”)

but would also contain structures uniquely tailored for the release of modified snails and the

epidemiological context of schistosomiasis transmission. These might include a national-level

body that oversees the technical review of the proposed study or trial, a collaborative academic

institution that contributes expertise and provides regulatory structures such as IRBs and Insti-

tutional Biosafety Commissions (IBCs), and regionally guided mechanisms for community

engagement. In addition, there will also be a need for rigorous site selection criteria to ensure

appropriate local oversight of the study. Though perhaps less of a possibility with snails than

with mosquitoes, geographic boundaries might be crossed by modified organisms; therefore,

an overarching international governance framework will likely be required for countries to

adopt this disease control strategy, cognizant that each has its own sovereign regulatory pro-

cess. With regard to the latter, some have proposed a neutral third-party coordinating body

whose task would be to establish, facilitate, and report on inclusive deliberations between all

involved parties, with a particular emphasis on the local impacted communities that will first

be affected [138].

Conclusions

Introduction of gene drives in snails for schistosomiasis transmission control will be complex

but could be feasible in the near future. The time for a community-wide discussion of its

potential impact is now. Although MDA, WASH initiatives, and community education have

been instrumental in reducing the burden of disease of schistosomiasis, intermediate host con-

trol remains an essential component of the integrated disease control strategy, and cutting-

edge genetic control techniques should be included as a potential addition to the portfolio for

intermediate host control.

Because of its ecological specificities, the relevance of gene drives for the snail–schistosome

system remains to be fully investigated. Building upon the brief introduction here, more com-

prehensive mathematical modeling of the potential impact of a snail gene drive should be per-

formed, and this should incorporate relevant parameters of how the introduction of

engineered B. glabrata would affect other parasite communities that parasitize these snails.

Many of these parameters will need to be worked out through basic research of heterospecific

interactions within individual snail species, as currently it is unclear how these interactions

would affect persistence of resistant snails in the environment or how resistance to one parasite

might affect susceptibility to another. Indeed, more needs to be known about the genetic deter-

minants of B. glabrata resistance to other trematodes, especially because mechanisms of inva-

sion and host immune interference can differ between digeneans parasitizing the same snail

host [139]. Comparative immunology analyzing the host responses of B. glabrata to either

schistosomes or echinostomes has provided an ideal platform for this work, and this model

could aid predictions of how engineered snails may interact with the diverse number of para-

sites encountered in their environment. These interactions highlight the difficulty of translat-

ing an engineered B. glabrata strain to the field and predicting its widespread ecological

impact, but the current knowledge gap is not impassable.

Basic research of genome editing of B. glabrata (initially including the Bge cell line) and

other snail intermediate hosts should continue. In addition, because of the high global burden

of schistosomiasis and the urgent need for transmission interruption, successful editing and

transmission of an engineered allele should be immediately reported via preprint and subse-

quent publication, followed by well-contained laboratory and mesocosm trials. Even if the

effectiveness of gene drives is supported by these preliminary investigations, its implementa-

tion and deployment will still face many obstacles. For example, the translation to field trials
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will be challenging. However, the necessary scientific and governance expertise is available in

the community of schistosomiasis research and disease control, and the breadth of experiences

within the malaria research community will provide an invaluable precedent and guide. Ulti-

mately, through collaborative efforts and responsive scientific progress, a future scenario of

schistosomiasis reduction or even elimination is possible.

Supporting information

S1 Appendix. Mathematical model used to illustrate the qualitative behavior of transmis-

sion patterns following successful introduction of engineered resistant snails.
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