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Abstract—The reconstruction of gene regulatory networks from gene
expression data has been the subject of intense research activity. A variety
of models and methods have been developed to address different aspects
of this important problem. However, these techniques are narrowly
focused on particular biological and experimental platforms, and require
experimental data that are typically unavailable and difficult to ascertain.
The more recent availability of higher-throughput sequencing platforms,
combined with more precise modes of genetic perturbation, presents an
opportunity to formulate more robust and comprehensive approaches
to gene network inference. Here, we propose a step-wise framework
for identifying gene-gene regulatory interactions that expand from a
known point of genetic or chemical perturbation using time series gene
expression data. This novel approach sequentially identifies non-steady
state genes post-perturbation and incorporates them into a growing
series of low-complexity optimization problems. The governing ordinary
differential equations of this model are rooted in the biophysics of
stochastic molecular events that underlie gene regulation, delineating
roles for both protein and RNA-mediated gene regulation. We show the
successful application of our core algorithms for network inference using
simulated and real datasets.

I. INTRODUCTION

The elucidation of gene regulatory networks is fundamental to

understanding the dynamic functions of genes in biochemical, cellular

and physiological contexts. The architectures of networks comprised

of small numbers of genes are generally deciphered using classi-

cal experimental techniques, where biophysical data describing the

interactions of genes and their products can lead to useful models

and well-characterized systems. While this validated experimental

tract continues to provide valuable biological insight, it is ultimately

laborious and costly, and often demands strategies uniquely tailored to

individual biological systems and problems. Furthermore, the models

that result from these efforts tend to be limited to a very modest

subset of genes, typically suffer from a lack of temporal resolution,

and focus narrowly on very particular modes of interaction.

To complement these established approaches, there is a great

impetus to develop more efficient and uniformly applicable in silico
methods for gene network inference and discovery [1], [2], [3], [4],

[5], [6], [7]. Of particular interest is the goal of gene network infer-

ence using perturbed gene expression data [8], [9], [10], [11], [12],

[13], [14], [15], [16], whereby gene expression levels are measured

under the influence of either genetic or chemical perturbations of the

system. Previous attempts at network reconstruction via perturbation

tend to be limited to the analysis of steady-state gene expression. The

growing ubiquity of next-generation sequencing technologies presents

a powerful high-throughput substrate for capturing the dynamic and

non steady-state aspects of gene expression.

In this work, we seek to develop a robust framework for network

inference that relies on temporal gene expression data coupled

to genetic or chemical perturbation. In a departure from previous

attempts, our formulation does not require a priori knowledge beyond

the set of temporal gene expression measurements, acknowledges the

non-steady state and dynamic nature of gene expression, incorporates

both RNA and protein-mediated regulation, sequentially absorbs a

growing number of genes into the regulatory network immediate to

perturbation, aims for sparsity in network topology, and reduces an

otherwise complex optimization problem into a convex form that can

be solved efficiently. This method is best suited for small network

inference local to a point of perturbation, within a larger network in

approximate steady state.

Notation: Throughout this paper {d, i, j, k, l} count integer num-

bers. Column vectors and matrices are indicated by bold lower-case

and upper-case letters, respectively. We use 1 to show a vector with

all entries 1 and 0 a vector with all entries 0. The set of real numbers

is denoted as R and positive real numbers R+. The indicator function

IR+{x} has the value one when x ∈ R
+, otherwise zero. The

operator sign(x) replaces each entry of x with its sign function value.

We use (X)T to denote transpose of X, dx(t)/dt and x′(t) the first

derivative of x(t) with respect to time t, ‖x‖1 the 1-norm of vector

x, ‖x‖2 the 2-norm of vector x, and ‖X‖ the largest singular value

of matrix X. We explicitly state a function of time in the form x(t).
This is to be distinguished from vectors of the form x(i), where i is

a positive integer representing the ith entry of the vector x.

II. SYSTEM MODEL

A. Gene expression datasets and perturbation

Let xi(t) and yi(t) denote the RNA-level and protein-level expres-

sion of gene i at time t, respectively. In practical cases, with expres-

sion data originating from microarray or RNA-Seq experiments, the

total number of genes in the system is exceedingly larger than the

total number of samples in the time series.

The paper is concerned with datasets with known points of

perturbation. In this experimental scheme, a gene xp
i is specifically

targeted for perturbation via either gene suppression or gene over-

expression. Perturbation is triggered at a known time point after

a series of presumably steady state measurements. Without loss of

generality, it is assumed that the starting point of perturbation occurs

at t1 and prior measurements are approximately steady state. Datasets

from experiments that conform to this scheme are in the following

form, where xp
i (t1) represents the point of perturbation and L denotes

the total number of samples post-perturbation.

Xp ..=

⎛
⎜⎜⎜⎜⎜⎜⎝

. . . x1(t0) x1(t1) . . . x1(tL)
. . .

...
...

. . .
...

. . . xi(t0) xp
i (t1) . . . xp

i (tL)
. . .

...
...

. . .
...

. . . xm(t0) xm(t1) . . . xm(tL)

⎞
⎟⎟⎟⎟⎟⎟⎠

B. Conceptual description of inference approach

We consider a non-perturbed system as one with genes in steady

state, i.e., where dxi(t)/dt and dyi(t)/dt are approximately zero.
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After a series of steady state expression measurements, a protein-

encoding gene in this system is perturbed to bring about a dramatic

change in its expression level, i.e., where |dxp
i (t)/dt| � 0, followed

by a series of post-perturbation measurements. The discrete set of

expression measurements, with appropriate temporal resolution, can

be used to produce continuous gene trajectory curves.

For a short period of time post-perturbation, the perturbed gene

falls out of steady state while all other genes remain effectively in

steady state. The induced change in RNA expression, Δxp
i , is coupled

to a delayed change in protein expression, Δyp
i . This shift in protein

availability leads, through the immediate regulatory network of the

perturbed protein, to changes in the expression levels of other genes.

Consider the set of all genes that are affected by Δyp
i at time t.

We divide this set into protein and miRNA-encoding subsets. The

set of all indices that correspond to protein-encoding genes is shown

as G(t), and M(t) is set of all indices that correspond to miRNA-

encoding genes. We define the collection of RNA expression data

for these subsets as XG(t)
..= {xi(t)|i ∈ G(t)} and XM(t)

..=
{xi(t)|i ∈ M(t)}, respectively. We further define the collection of

protein expression levels for subset G as YG(t)
..= {yi(t)|i ∈ G(t)}.

In principle, we can identify genes that fall out of steady state in

an ordered manner with gene trajectory analysis. The growing set

of non-steady state actors in the system, both members of G(t) and

M(t), can then be sequentially incorporated into a growing network

of interactions to be modeled.

C. Governing regulatory equations

Gene and protein expression dynamics are often modeled in the

form of ordinary differential equations (ODE) [17], [18], [19], with

gene-specific rate constants for molecular synthesis and degradation

and gene-specific functions accounting for the regulatory effects of

proteins. We introduce miRNA-mediated gene regulation into this

model and establish functions for both protein and RNA regulatory in-

teractions that complement our overall approach to network inference.

The architecture of the gene regulatory circuit under consideration is

depicted in Figure 1.

This circuit can be represented in the following form:

dxi(t)

dt
= τifi(YG(t))−

(
λRNA
i + gi(XM(t))

)
xi(t) (1)

dyi(t)

dt
=

(
ri − hi(XM(t))

)
xi(t)− λProt

i yi(t), (2)

where τi is the rate of transcription when RNA polymerase (RNAP)

is bound, fi(YG(t)) is the probability of RNAP binding, λRNA
i is

the rate of basal RNA degradation, gi(XM(t)) incorporates the effect

of miRNA-mediated RNA degradation, ri is the rate of translation,

hi(XM(t)) accounts for the effect of miRNA-mediated translational

inhibition, and λProt
i is the rate of protein degradation. It follows

from the biological definitions of the system that parameters τi,
λRNA
i , ri, and λProt

i are to be positive and hi(XM(t)) ≤ ri.

D. Protein-mediated regulation

For each gene, i, we employ an existing statistical thermodynamic

framework [20], [21] to model the equilibrium probability of RNAP

binding to a gene of interest as a function of protein regulators,

fi(YG(t)). We extend a previous derivation of multiple protein

regulators operating on a single gene [22] and explicitly show that

the general form can be expressed as a function of non-steady state

genes, G(t) (Appendix A). Although steady state regulators play an

active role in gene regulation, we can effectively restrict our binding

probability function to the activities of perturbed regulators. This

G

miRNAGene

Gene miRNA

P P
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Fig. 1. Gene regulatory circuit. ‘Gene’ represents protein-encoding genes
and ‘miRNA’ represents miRNA-encoding genes. Protein-encoding genes
can give rise to transcription factors (‘TF’) that directly exert influence on
the cis regions of other genes, as well as non-TF proteins (‘G’) that can
indirectly act through TFs and various biochemical cascades. These protein
regulators ultimately affect the equilibrium probability of RNA polymerase
(‘P’) being bound to a promoter of interest. Additionally, miRNAs can directly
repress expression via targetted RNA degradation or translational repression.
All proteins and RNAs in this system undergo varying rates of chemical
degradation.

function is shown below.

fi(YG(t)) =

ai0 +
N(t)∑
j=1

aij

∏
k∈Sij(t)

yk(t)

1 +
N(t)∑
j=1

bij
∏

k∈Sij(t)

yk(t)

(3)

where Sij(t), 0 ≤ j ≤ N(t), is the list of all possible protein

products of genes within set G(t) that interact to form regulatory

complexes and N(t) is the cardinality of set Sij(t). For instance

when G(t) = {1, 2}, there are N(t) + 1 = 4 complexes as the

empty set Si0 = {∅}, Si1 = {1}, Si2 = {2}, and Si3 = {1, 2}. To

reduce the complexity of this model, we restrict Sij(t) to all terms

up to the second-order, accounting for the interactions of no more

than two proteins bound together. In this arrangement, a complex

represents either the products of a single gene or the interaction of the

products of any two genes that can form a regulatory agent. However,

any number of complexes can additively combine to regulate single

genes. The numbering of complexes is an arbitrary labeling of genes

and gene-pairs in the system. As shown in Appendix A after equation

(19), the coefficients 0 ≤ aij ≤ bij depend on the binding energies

of regulator complexes that act on a promoter region, and ai0 and

bi0 correspond to the case where no regulators are bound to the

promoter region (
∏

k∈Si0(t)
yk(t) ..= 1). It is assumed all coefficients

are normalized so that bi0 = 1.

E. miRNA-mediated regulation

To account for the effects of miRNA regulation on each gene,

we draw on previous mass-law (linear) models [23], [24] that

acknowledge two primary routes of inhibitory regulation: (i) cleavage

or degradation of target transcript and (ii) translational repression.

These are represented by functions gi(XM(t)) and hi(XM(t)), re-

spectively. The former is a modifier of the RNA degradation rate

constant, λRNA
i , while the latter detracts from RNA available to

the translational machinery without affecting RNA concentration as



3

Gene Expression Data

Estimating Gene 
Expression

(P1)

G(t) and M(t) 

Change Detection

D = number of bases

R = number of intervals

T = detection threshold

Estimating Protein 
Expression

(P2)

Network Inference(Algorithm 1)

Fig. 2. Overview of gene inference pipeline, beginning with a normalized
gene expression dataset. The first stage involves the estimation of all gene tra-
jectories as noise-free and continuous curves (P1), followed by segmentation
into equally-spaced intervals for detection of significant changes in expression.
The time-dependent expansion of G(t) and M(t), along with the result of
(P1), seed downstream network inference. In the next stage, (P2) is used to
estimate protein expression, and finally all obtained results are considered
in algorithm 1 to produce a regulatory network map. Figure 3 provides a
graphical description of the bracketed pre-inference stages.

assayed. These functions are shown below.

gi(XM(t)) =
∑

j∈XM(t)

λRNA
ij xj(t) (4)

hi(XM(t)) =
∑

j∈XM(t)

λProt
ij xj(t) (5)

where both λRNA
ij and λProt

ij are greater than or equal to zero.

We impose the constraint that any given miRNA can only inhibit

the expression of a particular target mRNA through one mode of

regulation, either transcript cleavage or translational repression. This

is reasonable, given that the particular pathway of inhibition is

determined by the specificity of binding between a particular miRNA

and a seed site on a target transcript, which is a fixed interaction for

each miRNA-mRNA pairing [25], [26], [27]. This constraint takes

the following mathematical form

IR+{λRNA
ij }+ IR+{λProt

ij } = 1.

III. NETWORK INFERENCE ALGORITHM

Sub-sections III-A - III-D contain all the core algorithmic com-

ponents in our proposed inference pipeline. A graphical overview of

how these modular algorithms form a framework for gene network

inference is shown in Figure 2. This linear ordering of post-processing

and inference steps, although designed for a normalized gene expres-

sion dataset involving a precise perturbation, is robust and flexible.

A. Modeling and estimation of gene expression

Normalized gene expression values, such that xi(t) ≤ 1, are

the given input for the algorithms described in this and subsequent

sections. In reality, gene expression trajectories are inevitably noisy,

which perturb the model parameters away from the true values. To

reduce this noise effect, we first represent gene expressions as a linear

combination of basis functions in the following form

xi(t) =
D∑

d=1

θidϕd(t) = ϕ(t)Tθi, (6)

where D is the total number of bases and θid the coefficient of

the dth basis function, ϕd(t). The basis functions are chosen to

take the form of a B-spline (Appendix B). Although all genes

are associated with a common set of basis functions in (6), one

can consider different sets of basis functions for different genes.

Moreover, different basis functions such as a radial basis [28] or

a mixed B-spline [29] may lead to more generalized characterization

of gene expression. Nevertheless, we assume that gene trajectories

smoothly change and a few B-spline basis functions are sufficient to

estimate gene expressions.

The form of (6) allows us to fit a continuous function for a

set of discrete gene expression measurements, using the following

minimization

(P1) min
θi

∥∥∥∥∥
L∑

j=1

(
xi(tj)−ϕ(tj)

Tθi

)∥∥∥∥∥
2

+ γθθ
T
i Kθi,

where the roughness penalty θT
i Kθi =

∫ tL
t1

(
d2xi(t)/dt

2
)2

dt and

K is a roughness matrix with the (j, k)th entry
∫ tL
t1

ϕ′′
j (t)ϕ

′′
k(t)dt.

Here, the first term is intended to diminish noise within measurements

and the second term is intended to smooth our approximations. The

parameter γθ is tuned by cross validation where training data is

available, otherwise it can be drawn from a characterized network

from the nearest available biological system.

Employing (P1), our estimation to xi(t), denoted as x̂i(t), is a

continuous function in time and its first derivative can be easily

calculated as

dx̂i(t)

dt
� x̂i(t+Δt)− x̂i(t)

Δt
. (7)

Throughout the rest of the paper, it is assumed that our samples

are taken from x̂i(t) and therefore, any arbitrary number of samples,

L, is achievable. We further replace x̂i(t) with xi(t) for notational

convenience.

B. Detection of perturbed genes

We can introduce a simple first approach for detecting when

individual genes exit steady state post-perturbation. Gene expression

models generated via (P1) are essentially smooth and noise-free when

the total number of bases is restricted to an appropriately small

number, D. High-frequency gene trajectories, whether a product

of noise or periodicity in expression [30], [31], are converted into

flat trajectories. This property allows us to detect when significant

non-periodic deviations occur with respect to the initial steady state

measurement(s). More precisely, time interval [t1, tL) is divided into

R sub-intervals as [rt{1,L}, (r+1)t{1,L}) for all 1 ≤ r ≤ R, where

t{1,L} ..= (t1− tL)/(R+1). We choose R with respect to the nature

of the original expression data, such that R ≥ D.

For each sub-interval, we look for the maximum and minimum

values of trajectories. The sets G(t) and M(t) are then expanded as

follows. At sub-interval r, gene i is included within either G(t) or

M(t) for t > rt{1,L} provided that the deviation from the steady

state measurement of gene i is greater than a desired threshold, T .
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Fig. 3. The bracketed pre-inferenced stages of the pipeline in Figure 2 are
shown graphically. Discrete expression data from two genes and a small
number of basis functions are utilized to produce continuous models of
expression (P1), followed by segmentation and change detection. In this
simple example, a change in gene 2 is detected in sub-interval r = 1, and a
change in gene 1 is detected in sub-interval r = 5.

In the simulations described in this paper, T was set in the range of

[0.15, 0.20] for normalized expression data. Both R and this threshold

can be modified to better reflect the frequency of gene expression

measurements for a given biological system (as shown in Figure 3).

If more complex change detection schemes are preferred, a number

of alternative approaches can be adapted for this purpose [32], [33],

[34].

C. Modeling and estimation of protein expression

Formulation: Similar to (6), we express the protein level yi(t) as

yi(t) =
D∑

d=1

αidϕd(t) = ϕ(t)Tαi. (8)

Our objective is first to find αi through the ODE (2) resulting in an

estimation of the protein level yi(t). The calculated yi(t)’s are in turn

used to approximate unknown variables associated with the ODE (1).

One of the challenges of solving non-linear ODEs is that the solution

does not usually have a closed form. We propose to transform the

non-linear ODE (2) into a linear regression problem. To motivate

our method of constructing the ODE solution, we consider the first

derivative of yi(t) as

y′
i(t) = ϕ′(t)Tαi,

and ODE (2) is consequently represented as

ϕ′(t)Tαi =

⎛
⎝ri −

∑
j∈M(t)

λProt
ij xj(t)

⎞
⎠xi(t)− λProt

i ϕ(t)Tαi.

We rewrite the above equation in the following form

rixi(t)− xM(t)
TλR

i (t)− bi(t)
Tαi = 0, (9)

where bT
i (t)

..= [λProt
i ϕ(t)T + ϕ′(t)T ] and λR

i (t) is the column

vector with entries λProt
ij , ∀j ∈ M(t). The miRNA expressions

corresponding to λR
i (t) are indicated by the vector xM(t) such

that both vectors, λR
i (t) and xM(t), have the same index order.

For notational convenience, we assume that all entries of xM(t) are

multiplied by xi(t).

Consider gene expressions at times tl, 1 ≤ l ≤ L. Setting all

available gene expressions in equation (9), we arrive at

Ai

(
−ri, z

T
i ,α

T
i

)T

= 0,

where

Ai
..=

⎛
⎜⎜⎜⎝
xi(t1) (xM(t1)

T ,0(t1)
T ) bi(t1)

T

xi(t2) (xM(t2)
T ,0(t2)

T ) bi(t2)
T

...
...

...

xi(tL) xM(tL)
T bi(tL)

T

⎞
⎟⎟⎟⎠ , zi ..= λR

i (tL),

and 0(tl) is the zero column vector with length card(M(tL)) −
card(M(tl)). When the length is zero, we do not consider the vector

0(tl), e.g., (xM(tL)
T ,0(tL)

T ) is replaced by xM(tL)
T in the last

row of Ai. Matrix Ai has L rows and card(M(tL)) + D + 1

columns. Given that ri is positive, we normalize
(−ri, z

T
i ,α

T
i

)T
with respect to ri and represent the normalized vector as(−1, zTi ,α

T
i

)T
, acknowledging abuse of notation. Given λProt

i and

M(t), matrix Ai is completely determined.

Algorithm: We need to solve the linear system model

Ai

⎛
⎝−1

zi
αi

⎞
⎠ = 0 (10)

for zi and αi when matrix Ai is determined. For identifiability of

zi and αi, we require that L ≥ card(M(tL)) + D, that is the

number of equations is no smaller than the number of unknown

parameters. However the sparsity in zi, given that only a small

number of miRNAs typically act on a common gene [35], reduces

the number of required equations.

To account for measurement noise and encourage zi to be sparse,

we will minimize the 2-norm error described in (10) with 1-norm

regularization ‖zi‖1. Furthermore, we adopt the analogous roughness

penalty αT
i Kαi as used in (P1). Thus, we propose to obtain the ODE

(2) solution with the following convex optimization

(P2) min
{zi,αi}

∥∥∥∥∥∥Ai

⎛
⎝−1

zi
αi

⎞
⎠
∥∥∥∥∥∥
2

+ γz‖zi‖1 + γαα
T
i Kαi,

subject to zi ≥ 0

(xM(tl)
T ,0(tl)

T )zi ≤ xi(t) ∀1 ≤ l ≤ L

where γz and γα are chosen using cross validation. The second

constraint ensures that the total rate of translation, ri − hi(XM(t)),
is not negative. Due to the convex nature of this problem, it can

be quickly solved for large gene datasets. This recovery of protein

expression is dependent on prior knowledge of individual protein

degradation rates, λProt
i . In the absence of this experimental data, we

can fix the value of λProt
i to 1 for the entire system and still achieve

accurate network reconstruction as shown in subsequent sections.

While this assumption, combined with the normalization of yi(t)
with respect to ri, produces protein and gene expression levels in

the same range of values, we may observe inaccuracies in inference

resulting from the fact that true degradation and translation rates may

occur on different scales.

D. Gene regulatory network inference

Formulation: The model given by ODEs (1) and (2) describes the

evolution of RNA and protein expressions provided that we know

all the regulatory parameters, e.g., aij , bij , and τi. Coefficients aij

and bij are difficult to experimentally determine and it is currently

infeasible to carry out the relevant measurements simultaneously for

a complex system with gene products under consideration. Our goal
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is to estimate these coefficients so that the ODE models can be

temporally fitted to gene expression data. Specifically, we will use

the previously described estimations of protein and RNA expression

to approximate aij and bij , and to infer a regulatory network map.

To improve the reliability of the inferred network, we take into

account time-dependent changes in gene levels and construct a set of

equations accordingly. This is an important departure from standard

steady state treatments. In this scenario, we first assume that the

non-perturbed system is in an initial steady state, where RNA and

protein levels are near constant (i.e., dxi(t)/dt = dyi(t)/dt � 0).

As previously mentioned, the perturbation of protein-encoding gene

xp
i (t1) first leads to fluctuations in the expression levels of genes in

its immediate regulatory network. Genes that have exited a steady-

state expression profile at any time up to t, G(t) and M(t), expand

to contain greater numbers of genes that interact to form a putative

regulatory network.

Considering changes in gene levels xi(t) at time tl, 1 ≤ l ≤ L,

with the exception of xp
i (t1), the term τifi(YG(tl)) in equation (1)

can be rewritten as follows

τifi(YG(tl)) =

τiai0 +
N(tl)∑
j=1

τiaij

∏
k∈Sij(tl)

yk(tl)

1 +
N(tl)∑
j=1

bij
∏

k∈Sij(tl)

yk(tl)

..=
pT
i (tl)ai

pT
i (tl)bi

,

(11)

where ai is a vector with (j+1)th entry τiaij , 0 ≤ j ≤ N(tL). The

(j+1)th element of vector pi(tl) is described by
∏

k∈Sij(tl)
yk(tl)

when 0 ≤ j ≤ N(tl) and zero for N(tl)+1 ≤ j ≤ N(tL). Vector bi

is defined such that the first entry is 1 and (j+1)th, 1 ≤ j ≤ N(tL),
is bij .

Remark 1. Given that yi(t)s are normalized with respect to ri,
aij and bij include the multiplier term

∏
k∈Sij(tl)

rk so that the
normalization can be vanished. Similarly, τi can be absorbed into the
coefficients aij , where we assume τi < 1 to maintain the algorithm
constraint 0 ≤ ai ≤ bi.

We also represent⎛
⎝λRNA

i +
∑

j∈M(tl)

λRNA
ij xj(tl)

⎞
⎠xi(tl) +

dxi(t)

dt

∣∣∣∣
t=tl

..= uT
i (tl)λi,

(12)

in which ui(tl) and λi are defined as follows. First and second

entries of vector ui(tl) are dxi(t)/dt|t=tl and xi(tl), respectively.

The remaining entries are xj(tl)xi(tl), j ∈ M(tl). Making the same

arrangement of array as ui(tl), vector λi is determined by first entry

1, second entry λRNA
i , and subsequent entries λRNA

ij , j ∈ M(tl).
Using (11)–(12), equation (1) can be reformulated as

Ωl(ai,bi,λi) ..= pT
i (tl)ai − uT

i (tl)λib
T
i pi(tl) = 0. (13)

Algorithm: We need to solve the non-convex problem

(P3) min
{ai,bi,λi}

Γ(ai,bi,λi)

subject to 0 ≤ ai ≤ bi, 0 ≤ λi

bi(1) = 1

λi(1) = 1,λi(2) = λRNA
i

with

Γ(ai,bi,λi) ..=

L∑
l=1

Ωl(ai,bi,λi)
2 +

γ1
2

(‖λi‖22 + ‖bi‖22
)
+

γ2‖bi‖1 + γ3‖λi‖1,

The first term in the above equation follows from (13). The second

term associated with γ1/2 motivates grouping effect among variables

bi and λi [36], [37]. Due to the assumption that each gene has only

a few regulators, 1-norm regularizations are considered to encourage

sparse solutions. The validity of this assumption will vary based on

the subnetwork and perturbation of interest. Immediacy to complex

trans-acting regulators that act on many genes and networks is likely

to confound local network recovery. Note that in the absence of

miRNAs (all λRNA
ij = 0), terms ‖λi‖2 and ‖λi‖1 are no longer

needed.

Non-convex optimizations are generally hard to solve in a rea-

sonable time. Hence, we seek to identify a special treatment that

reduces the computational complexity and provides desired solutions.

Optimization (P3) is convex in {ai,bi} for fixed λi and vice versa,

and therefore the problem is bi-convex and can be solved using a

variation of the alternating-direction method of multipliers (ADMM)

which cycles over two groups of variables [38], cf. Appendix C. Here,

since there are no equality constraints in (P3), ADMM is reduced

to simple alternating minimization (see section 9.2.1 in [39]). The

proposed solver entails an iterative procedure compromising two steps

per iteration k = 1, 2, . . .

Algorithm 1 : Gene regulatory inference
input ai,bi,λi

initialize ai[0],bi[0], and λi[0] at random with respect to

bi(1) = 1,λi(1) = 1, and λi(2) = λRNA
i .

for k = 0, 1,. . . do
[S1] Update primal variables ai and bi:

{ai[k + 1],bi[k + 1]} = arg min
{bi,ai}

Γ(ai,bi,λi[k])

subject to 0 ≤ ai ≤ bi

bi(1) = 1.

[S2] Update primal variable λi:

λi[k + 1] = argmin
λi

Γ(ai[k],bi[k],λi)

subject to λi ≥ 0

λi(1) = 1,λi(2) = λRNA
i .

end for
return ai,bi,λi

The above iterative procedure implements a block coordinate

descent method [40]. At each minimization, the variables that are

not being updated are treated as fixed and are replaced with their

most updated values. Then the iteration alternates between two sets

of variables, {ai,bi} and λi.

One difficulty with the proposed solver is that it may result

in stationary points which are not necessarily globally optimal.

This occurs since optimization (P3) is not convex in {ai,bi,λi}.

Motivated by the proposition 1 in [41], the next theorem offers a

global optimality certificate upon the convergence of the solver. In

the case that the theorem is not applicable, we perform ADMM for

multiple initials, {ai,bi,λi}, and choose the local optima that leads

to the smallest cost function in (P3).

Theorem 1. Let {āi, b̄i, λ̄i} be a stationary point of (P3). If∥∥∥∥∥
L∑

l=1

Ωl(āi, b̄i, λ̄i)ui(tl)p
T
i (tl)

∥∥∥∥∥ ≤ γ1
2
, (14)

then {āi, b̄i, λ̄i} is the globally optimal solution of (P3).

Proof. See Appendix D.
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Fig. 4. Map of gene regulatory network described by equations (17) and (18) .
First-order (single) and and second-order (combined) regulators are depicted
in concentric circles. Green arrows specify gene activation and red arrows
specify gene repression. The relative magnitudes of activation and repression
are roughly represented by arrow thickness.

Remark 2. For non-convex problems, ADMM offers no convergence
guarantees. Nevertheless, there are evidences in the literature that
show empirical convergence of ADMM, particularly when the non-
convex exhibits specific structures. For example in our scenario,
problem (P3) is bi-convex and admits unique closed form solutions
for sub-problems [S1] and [S2]. This observation along with desired
properties, Theorem 4.5 and 4.9 in [42], are indeed a sufficient case
for successful convergence. A formal proof of convergence is beyond
the scope of this paper.

Algorithm 1 is intended for the case in which the RNA degrada-

tion rates, λRNA
i , are available. However, experimentally measuring

λRNA
i is a difficult task. We offer a simple modification to the

algorithm so that network inference can be still obtained without

prior knowledge of RNA degradation rates.

For simplicity of explanation, we can first remove miRNAs from

our model. ODE (1) can then be rewritten as

Ωl(ai,bi, ci) ..= pT
i (tl)

(
ai − bi

dxi(tl)

dt
− cixi(tl)

)
= 0, (15)

and ci ..= λRNA
i bi. Employing the above reformulation, unknown

variables ai, bi, and ci are estimated through the following convex

optimization

(P4) arg min
{ai,bi,ci}

L∑
l=1

Ωl(ai,bi, ci) + γ2(‖bi‖1 + ‖ci‖1)

subject to 0 ≤ ai

ai ≤ bi

λminbi ≤ ci ≤ λmaxbi, (16)

where λmin and λmax specify an lower and upper bound for λRNA
i ,

respectively. Variable ci is introduced to remove λRNA
i from our

optimization. However, the new variable expands the feasible set of

solutions, which might create an answer different from the true value.

To reduce this effect, we add constraint (16) to (P4) to tighten the

feasible set of solutions. Given that λRNA
i /τi ≥ 1, we can take

on the additional constraint ai ≤ ci. In the subsequent simulations,

λmin is in the near-zero range [0.001, 0.01], and λmax is selected in

the range [0.1, 1]. It is straightforward to generalize the introduced

approach within the framework of (P3). Derivations are removed to

avoid repetition in the paper.

Fig. 5. Gene expression trajectories (unnormalized) before and during the
imposed perturbation. The system is in steady state before time 0. Gene 1
is artificially perturbed at time zero, leading to changes in gene expression
levels. A new steady state is eventually achieved at approximately time 50. We
sample expression levels between time 0 (the starting point of perturbation)
and 50 (the new steady state) and use them as data in our algorithm.

IV. SIMULATIONS

A. Small gene network with prior knowledge of degradation rates

To demonstrate the proposed time-series approach, we consider the

three-gene network described by the following systems of ODEs for

gene expression

dx1(t)

dt
=

0.1 + 0.05y1(t)y2(t) + 0.025y1(t)y3(t)

1 + 0.1y1(t) + 10y3(t) + 0.05y1(t)y2(t) + 0.025y1(t)y3(t)

− 0.1x1(t),

dx2(t)

dt
=

0.1 + 0.1y1(t) + 0.1y1(t)y2(t)

1 + 0.1y1(t) + 0.1y1(t)y2(t) + 10y1(t)y3(t)
− 0.1x2(t),

dx3(t)

dt
=

0.1 + 0.1y2(t)

1 + 0.1y2(t) + .1y3(t)
− 0.1x3(t), (17)

and the following system of ODEs for protein expression

dy1(t)

dt
=x1(t)− 0.5y1(t),

dy2(t)

dt
=2x2(t)− 0.5y2(t),

dy3(t)

dt
=x3(t)− 0.5y3(t). (18)

The above toy model, visualized in Figure 4, is provided to better

explain our algorithms. The explicit system of ODEs, describing the

kinetics of the system [43], allows us to generate samples to fit our

model and to also compare recovered solutions with the ground truth.

This model also incorporates complex modes of regulation, including

self-regulation and combined regulators.

To generate data, arbitrary initial conditions are assigned to ODEs

(17) and (18) and the system is allowed to resolve to a steady state.

To perturb this steady state, the expression level of gene 1, x1(t), is

artificially fixed to 0.3, leading to fluctuations in the expression levels

of other genes. Figure 5 illustrates expression trajectories before and

during the perturbation.

We collect 12 samples from each gene expression level. The

samples are chosen uniformly from time interval [0, 50]. Points 0 and

50 specify the times at which the perturbation starts and the system

reaches a new steady state, respectively. Using these sampled data,
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Fig. 6. Exact protein expression curves derived from model ODEs (17) and (18) (left), and their recovered estimations using 12 unnormalized timepoint
samples via (P2) (right). For convenience of graphical comparison, the values of ri were drawn from the system equations. Protein expression is otherwise
normalized with respect to ri, but this would result in a transformed scale for this qualitative comparison.

we solve optimization (P2) to effectively recover protein expressions

as shown in Figure 6.

We finally examine Algorithm 1, (P3), for the goal of network

recovery. In this scenario, our target is to estimate vectors ai and

bi. We assume that the degradation rates are known in advance

and therefore, since the system does not contain any miRNA in

this particular example, λi is completely at hand. Let us consider

gene 3 where the true value of a3 = (0.1, 0, 0.1, 0, 0, 0, 0) and

b3 = (1, 0, 0.1, 0.1, 0, 0, 0). Vectors a3 and b3 are indexed with

regard to

p3(tl) =

(1, y1(tl), y2(tl), y3(tl), y1(tl)y2(tl), y1(tl)y3(tl), y2(tl)y3(tl)).

Applying our method, we obtain a3 � (0.1, 0, 0.083, 0, 0, 0, 0) and

b3 � (1, 0, 0.083, 0.08, 0, 0, 0). Table I demonstrates that as the

sampling frequency increases, we attain more accurate approxima-

tions. Furthermore, it can be seen that the estimations achieve similar

accuracy after a small number of samples.

Employing the aforementioned single perturbation, we are only

able to recover the strongest edge of gene 2, b2(6) = 10. The

difficulty here is due to the sharp change in y1 (Figure 6), which

provides us with a minimal amount of dynamic information. y1
near-instantaneously switches between two steady-state levels of

expression, resulting in less accurate recovery of the underlying

dynamics. However, expression patterns in perturbed biological set-

tings tend to be more dynamic and are unlikely to contain this

type of expression pattern. In this example, the removal of sharp

TABLE I
INFERENCE OF BINDING COEFFICIENTS DESCRIBING ENERGIES OF

REGULATOR COMPLEX-PROMOTER INTERACTIONS BASED ON NUMBER OF

SAMPLE

# of Samples Variables Estimated vector entries

a3 0.097 0 0.082 0 0 0 0
8

b3 1 0 0.082 0.06 0 0 0
a3 0.1 0 0.093 0 0 0 0

16
b3 1 0 0.093 0.089 0 0 0
a3 0.1 0 0.1 0 0 0 0

24
b3 1 0 0.1 0.092 0 0 0

System identification for gene 3 based on sample frequency. Coefficients a3

and b3 are the numerator and denominator of pbound
3 (binding probability of

RNA polymerase to a given promoter).

instantaneous expression changes leads to complete recovery of the

gene regulatory network.

Remark 3. The recovery of regulatory networks using this proposed
approach is tightly associated with the presence of dynamic changes
in gene expression. These changes can provide us with a certain
amount of information which predominantly specifies the accuracy of
estimation. The achievable accuracy depends on many factors such
as nonlinearity in changes or similarity in the range of changes.

B. Medium (10-gene) simulated network with noise

We extend our approach to simulated networks of 10 genes, gen-

erated as part of the DREAM4 in silico network inference challenge

[45]. The available data for each network includes a simulated time

series of gene expression in response to five individual chemical

perturbations, along with single steady-state expression levels for

wild-type, knockdown, knockout, and multifactorial perturbations.

These datasets also simulate internal network noise and incorporate

measurement noise. We use these data to assess the robustness of our

approach in a non-ideal setup.

Our approach is geared towards precise genetic and chemical

perturbations, while these datasets simulate chemicals that are non-

specific in their interactions. To place us at further disadvantage, we

attempt network recovery using only the time series perturbations,

forgoing all other datasets available to solvers. Lastly, our approach

works best under conditions where RNA and protein degradation

rates are known. Given that this information is unavailable, this

exercise also serves as a test of our simplifying assumptions for such

situations. Unlike simulations in the previous section, the rules of this

challenge stipulate no self-regulation and no combined regulators.

DREAM4 Challenge 2 datasets for Networks 1 and 2 are used to

infer gene regulatory networks and to inspect predictions of network

topology using the official scoring pipeline. First, we use (P1) to

produce smooth and continuous gene expression trajectories from the

discrete and noisy time series dataset (Figure 7). We are given such

datasets each associated with an individual chemical perturbation.

For each dataset, perturbed genes are identified and incorporated as

described in Section III-B. Network inference is carried out using

Algorithm 1 and the inferred networks corresponding to five chemical

perturbations are joined as one network. In the absence of RNA

degradation rates, λmin is set to either 0.001 or 0.01, and λmax is set

to 0.1 or 1. If a directed network edge is identified, the probability

of the edge is set to 1 for weighted edges, and 0 otherwise. This is
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Fig. 7. Time series gene expression measurements from simulated DREAM4
datasets are shown with connected solid lines. Dashed lines of corresponding
color show that application of (P1) effectively produces noise-free (smooth)
and continuous gene expression curves.

done to allow scoring of our network with the provided scripts, given

our non-probabilistic formulation. Algorithm 1 minimization values

are filtered against abnormal values that could represent underfitting

and overfitting of data.

For Network 1, we report the area under the receiver operating

characteristic curve (AUROC) = 0.81 and the area under the

precision-recall curve (AUPR) = 0.75, and for Network 2, AUROC

= 0.76 and AUPR = 0.68. These results compare very favorably to

other time series-based methods applied to the same datasets [46].

In fact, for Networks 1 the best AUROC and AUPR values that can

offered by all approaches in [46] are 0.78 and 0.64, and for Network

2, 0.75 and 0.54. Therefore, our AUROC and AUPR values shows

improvements over the top reported results.

C. Network inference from yeast cell cycle time series

In order to probe real biological data with inherent noise, we apply

parts of our pipeline to a classical yeast cell cycle microarray dataset

[47]. This data is provided as a 25 point time-series with a 5 minute

sampling interval. Given the yeast cell is in an incredibly dynamic

stage post synchronization with α-factor pheromone, this again rep-

resents a vast departure from ideal near steady-state conditions with

a precise and local perturbation. We chose to focus our analysis on a

set of primary regulatory genes and complexes involved in core cell

cycle control and that showed greater than 15% changes in expression

over the time course [44]. This led to retainment of 7 genes. We use

(P2) to fit smooth continuous functions to the noisy gene expression

measurements exhibited in Figure 8. We next examine our proposed

scheme, (P4), to infer a gene regulatory network among these genes.

The inferred network is shown in Figure 8, with arrows indicating

directed edges for gene-gene excitatory and inhibitory interactions.

Of the 12 regulatory interactions inferred, 6 are correct in both

directionality and influence (i.e. inhibition vs activation) and 2 are

correct only in directionality. Further, 3 can be considered condition-

ally correct, whereby the predicted influence is mediated by a single

intermediate node that was absent from the model. A single edge was

labeled as a false positive, even though an argument can be made

for mediation of that influence by two intermediate nodes. Only two

known regulatory edges were not recovered with our algorithm (SWI5

is a positive regulator of SIC1, and FKH2 is a positive regulator of

SWI5 [44]). Strikingly, the algorithm correctly predicts a role for

combined regulators and recovers the only example of self-regulation

in the reference pathway. This is promising, given the absence of data

relating to protein degradation, contextless inference, and the non

step-wise nature of changes in expression that would be preferred in

our proposed experimental scheme.

V. CONCLUSIONS

The gene inference pipeline described in this work helps establish

a robust framework for network discovery from perturbed expression

data. The system of equations used to model eukaryotic gene regu-

lation include the novel extension of a thermodynamic and statistical

mechanic approach to polymerase binding. This pipeline is best suited

for the processing of expression measurements from high-resolution

time series experiments involving precise genetic or chemical per-

turbation of a steady state system. Although our approach aims for

small network recovery, we expect that reliable network inference

at larger scales can be achieved with data from multiple individual
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Fig. 8. Time-series gene expression measurements of yeast cell cycle-associated genes filtered at a stringent change detection threshold ( T = 0.15) (left),
and their recovered estimations using (P2) (center). The inferred network via (P4) is shown on the right, compared to the network as it’s presently understood
([44]). “True positives” represent edges recapitulated by the inference algorithm in both direction and influence, “near positives” represent edges correct in
direction but with reversed influence, “indirect positives” represent edges of correct direction and influence with a missing intermediate node, and “false
positive” indicates an edge not found in the reference network and that cannot be explained through a single intermediate node.
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perturbations acting within a given network. Genetic perturbation is

best in the form of induced over-expression or RNAi-mediated gene

knockdown. Chemical perturbation is best in the form of a chemical

that has a specific protein interaction and limited off-target effects.

However, we establish that this approach can yield insights under

non-ideal conditions.

The modular nature of our pipeline allows for the modification

of different stages to best fit a given biological system and of

expression information. Alternative approaches can be implemented

for the stages that precede the core inference algorithm, including

change detection. The performance of this approach can further

be improved with a priori knowledge of protein expression levels,

protein and RNA degradation rates, along with the labeling of non-

coding RNAs. Technologies are continually being improved for the

purpose of capturing these data in a genome-wide manner [48], [49],

[50], [51], to complement gene expression measurements. Our gene

inference approach can readily utilize protein expression data, protein

and RNA degradation data, and miRNA labeling data.

While we expect such inference approaches to work better for

homogenous and synchronized single-cell or single-tissue systems,

we also expect to capture the most prominent and meaningful aspects

of the aggregate dynamics of heterogenous mixed-cell populations,

multi-tissue systems, and whole organisms. Future directions include

the more comprehensive validation and refinement of these algorithms

for synthetic networks and higher-order eukaryotic systems, adapta-

tions of more sophisticated change detection schemes, and surveys

of a broader range of system-specific sampling frequencies.

This inference method has broad application in biological network

discovery. For example, it can be used to identify the topology of

gene regulatory networks immediate to drug response, and can be

used to identify new interactions for genes implicated in disease.

The inference data can then be used to seed and prioritize candidates

for downstream biological and in vivo validation.

APPENDIX

A. Treatment of protein regulators

Consider a gene for which the probability of RNAP being bound

to a specific promoter site, S, is under the potential influence of a

single non-steady state regulator, Regulator 1, and the collection of

all available regulators still in steady state. The steady state regulators

are encapsulated as a single super-protein complex, SS, that is fixed

as bound to the promoter region. Suppose that we have P RNAP, R1

Regulator 1, and RSS super-protein complex.

We apply the following notation: εNS
P is used to denote the energy

of the case in which RNAP is bound to a non-specific (NS) DNA

binding site, εSP,i0 the energy when RNAP is only bound to the S
binding site, εSP,i1 the energy when RNAP is specifically bound to the

promoter-regulator complex, εNS
SS the energy when the SS is bound

to the NS binding site, εSSS the energy when the SS is bound to

the S binding site, εNS
i1 the energy when Regulator 1 is bound to the

NS binding site, εSi1 the energy when Regulator 1 is bound to the S
binding site, and

ΔεP,i0
..= εSP,i0 − εNS

P ,ΔεP,i1
..= εSP,i1 − εNS

P ,Δεi1 ..= εSi1 − εNS
i1 .

Also define

Z(P,R1, RSS − 1) ..=

m!e−PβεNS
P e−R1βε

NS
i1 e−(RSS−1)βεNS

SS e−βεSSS

P !R1!(RSS − 1)!(m− P −R1 −RSS + 1)!

where Z(P,R1, RSS − 1) gives the total number of arrangements

for RNAP and R1 at NS binding sites, weighted by a Boltzmann

factor providing a relative energy for each state.

The available configurations of the system with corresponding

unnormalized probabilities are enumerated as follows: (i) Regulator

1 and RNAP unbound: Z(P,R1, RSS − 1), (ii) only Regulator

1 bound: Z(P,R1 − 1, RSS − 1)e−βεSi1 , (iii) only RNAP bound:

Z(P−1, R1, RSS−1)e−βεSP,i0 , and (iv) both Regulator 1 and RNAP

bound: Z(P−1, R1−1, RSS−1)e−βεSP,i1 . To derive the probability

of RNAP binding, we sum the probabilities of configurations in

which RNAP is bound to the specific site and divide over the

sum of probabilities of all potential configurations, Ztotal. Here, in

parallel to [22], it is shown how the effect of steady state proteins

can effectively be removed from the protein regulator formulation,

under the aforementioned arrangement. To represent the probability

of RNAP binding to the cis regulatory region of gene i, we define

pbound
i as follows.

pbound
i =

(
Z(P − 1, R1, RSS − 1)e−βεSP,i0

+ Z(P − 1, R1 − 1, RSS − 1)e−βεSP,i1

)/
Ztotal

=

(
Z(P − 1, R1, RSS − 1)e−βεSP,i0

+ Z(P − 1, R1 − 1, RSS − 1)e−βεSP,i1

)/
(
Z(P,R1, RSS − 1) + Z(P,R1 − 1, RSS − 1)e−βεSi1

+ Z(P − 1, R1, RSS − 1)e−βεSP,i0

+ Z(P − 1, R1 − 1, RSS − 1)e−βεSP,i1

)

=

(
m

R1
eβε

NS
P e−βεSP,i0 + eβε

NS
P eβε

NS
i1 e−βεSP,i1e−βεSi1

)
/(

m

R1
eβε

NS
P e−βεSP,i0 + eβε

NS
P eβε

NS
i1 e−βεSP,i1e−βεSi1

+
m2

PR1
+

m

P
eβε

NS
i1 e−βεSi1

)

=

1
y1
e−βΔεP,i0 + e−βΔεP,i1e−βΔεi1

1
y1
e−βΔε

P,i0 + e−βΔε
P,i1e−βΔεi1 + 1

Py1
+ 1

P
e−βΔεi1

=
Pe−βΔεP,i0 + y1Pe−βΔεP,i1e−βΔεi1

Pe−βΔε
P,i0 + y1Pe−βΔε

P,i1e−βΔεi1 + 1 + y1e−βΔεi1

=
Pe−βΔεP,i0 + y1Pe−βΔεP,i1e−βΔεi1

(1 + Pe−βΔε
P,i0) + y1e−βΔεi1(1 + Pe−βΔε

P,i1)

where we have applied the approximation m!/P !R1!(RSS−1)!(m−
P − R1 − RSS + 1)! ≈ mPmR1mRSS/P !R1!(RSS − 1)!. We

introduce y1, the protein product of Regulator 1 defined as R1/m,

for the purposes of normalization and in keeping with the protein

designations used throughout this paper. We additionally note that P
in the final steps of the derivation above is also normalized to m, but

we retain the same notation for simplicity.

The final derivation can be generalized to, for an indefinite number

of first and second order regulators.

fi(YG(t)) =

N(t)∑
j=0

Pe−βΔεP,ij e−βΔεij
∏

k∈Sij(t)

yk(t)

N(t)∑
j=0

(1 + Pe−βΔεP,ij )e−βΔεij
∏

k∈Sij(t)

yk(t)

, (19)

where Δεij is the binding energy of the jth complex to the promoter,

ΔεP,ij is the energy of RNAP being bound to the promoter-
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Fig. 9. The De Boor recursion for P = 3 and D = 4.

regulator complex j, and P is the concentration of RNAP. Setting

aij = Pe−βΔεP,ij e−βΔεij and bij = (1 + Pe−βΔεP,ij )e−βΔεij ,

we arrive at the form given in (3).

B. B-splines

B-splines have been well investigated in approximation theory

and numerical analysis, leading to a variety of important properties

such as computational efficiency and numerical stability. Particularly,

the B-spline basis functions have the best approximation capacity

based on the Stone-Weierstrass Approximation Theorem. Polynomial

functions are also used to estimate continuous functions. However,

the B-spline bases are shown to be optimally stable [52].

A set of B-spline basis functions in variable t is determined by

the degree of a piecewise polynomial, P , and a knot sequence [53].

The knot sequence is a set of points that divides a real interval into

a number of sub-intervals. More precisely, D bases of degree P
are parameterized by D + P + 1 knots, {t0, t1, . . . , tD+P } where

t0 ≤ t1 ≤ . . . ≤ tD+P . Employing this set of knots and the De

Boor recursion in [54], the dth B-spline basis of degree P , written

as ϕ
(P )
d (t), is derived recursively as follows:

ϕ
(0)
d (t) =

{
1 if td−1 ≤ t ≤ td
0 if otherwise

, (20)

ϕ
(p)
d (t) =

t− td−1

tp+d−1 − td−1
ϕ

(p−1)
d (t) +

tp+d − t

tp+d − td
ϕ

(p−1)
d+1 (t), (21)

for 1 ≤ d ≤ D + P − p where p = 0 in (20) and 1 ≤ p ≤ P
in (21). The above recursion is visualized in Figure 9 (reconstructed

from [53]).

The degree P = 3 or 4 is sufficient in most applications. The

number of basis functions should be large enough to arrive at accurate

estimation but not too large to cause overfitting. In our case, gene and

protein levels do not contain high frequency changes and therefore, a

small number of basis functions are sufficient to represent gene and

protein expressions.

C. Bi-Convex Problems

Bi-convex optimization is a generalization of convex optimization

where the objective function and the constraint set can be bi-convex

[42].

Definition 1. Let X ⊆ R
n and Y ⊆ R

n be two non-empty convex
sets. The set B ⊆ X × Y is called bi-convex if Bx

..= {y ∈ Y :
(x, y) ∈ B} is convex for each x, and By

..= {x ∈ X : (x, y) ∈ B}
is convex for each y.

Definition 2. A function f(x, y) : B → R is called bi-convex if
f(x, y) is convex on Bx for every fixed x and also convex on By for
every fixed y.

A common method to solve a bi-convex problem is ADMM [39].

The ADMM is an iterative augmented Lagrangian method that uses

partial updates for dual variables and replaces joint minimization by

simpler sub-problems. However, the mentioned procedure does not

guarantee global optimality of the solution.

D. Proof of Theorem 1

The stationary points {āi, b̄i, λ̄i} of (P3) are derived by setting

sub-gradients to zero as follows

∇aiΓ(āi, b̄i, λ̄i) = 2

L∑
l=1

Ωl(āi, b̄i, λ̄i)pi(tl) = 0 (22)

∇biΓ(āi, b̄i, λ̄i) = −2

L∑
l=1

Ωl(āi, b̄i, λ̄i)u
T
i (tl)λ̄ipi(tl)+

γ1b̄i + γ2 sign(b̄i) = 0 (23)

∇λiΓ(āi, b̄i, λ̄i) = −2
L∑

l=1

Ωl(āi, b̄i, λ̄i)p
T
i (tl)b̄iui(tl)+

γ1λ̄i + γ3 sign(λ̄i) = 0 (24)

with respect to constraints 0 ≤ āi ≤ b̄i and λ̄i ≥ 0. These

constraints admit that sign(·) can be replaced by vector 1 in the above

equations. It is obvious from (23)–(24) that b̄T
i ∇biΩ(āi, b̄i, λ̄i) =

λ̄T
i ∇λiΩ(āi, b̄i, λ̄i) = 0, which results in

2
L∑

l=1

Ωl(āi, b̄i, λ̄i)p
T
i (tl)b̄iu

T
i (tl)λ̄i = γ1b̄

T
i b̄i + γ2b̄

T
i 1

= γ1λ̄
T
i λ̄i + γ3λ̄

T
i 1. (25)

Consider the convex optimization

(P5) min
{ai,Gi,W1,W2}

L∑
l=1

(
pT
i (tl)ai − uT

i (tl)Gipi(tl)
)2

+ γ1κ(W1,W2)

subject to W ..=

(
W1 Gi

GT
i W2

)
� 0, (26)

where κ(W1,W2) ..= 1
2
(Tr(W1) + Tr(W2)).

Minimizing (P5) with respect to {W1,W2} leads to

‖Gi‖∗ = min
{W1,W2}

κ(W1,W2) subject to W � 0,

which is the alternative characterization of the nuclear norm [55].

Taking advantage of the nuclear norm, we can restrict matrix Gi

to be rank one as λib
T
i . Also, κ(·, ·) is able to satisfy the required

sparsity for {λi,b
T
i }. To investigate these claims, recall constraints

in (P3) and set Gi
..= λib

T
i , W1

..= λiλ
T
i + γ3

γ1
diag(λi), and

W2
..= bib

T
i + γ2

γ1
diag(bi) where diag(λi) is the diagonal matrix

with (j, j)th entry equal to λi(j). Then, the triple (Gi,W1,W2) is

feasible for (P5) due to(
W1 Gi

GT
i W2

)
=

(
λiλ

T
i + γ3

γ1
diag(λi) λib

T
i

biλ
T
i bib

T
i + γ2

γ1
diag(bi)

)

=

(
λi

bi

)(
λi

bi

)T

+
1

γ1

(
γ3 diag(λi) 0

0 γ2 diag(bi)

)
� 0. (27)
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In addition, we have

γ1κ(W1,W2) = γ1
(‖λi‖22 + ‖bi‖22

)
+ γ2‖bi‖1 + γ3‖λi‖1,

and therefore the same objective function for (P3) and (P5) are

obtained. This proves any feasible solution of (P5) yields an inner

bound for (P3).

We next establish that the proposed inner bound is always equal

to (P3) upon satisfying the condition introduced in Theorem 1 and

conclude the two problems are equivalent. The equivalence ensures

that the stationary point of (P3) (which exhibits Theorem 1 condition)

is in fact globally optimal. To show this, the Lagrangian is first formed

as

L(Gi,ai,W1,W2,M) =

L∑
l=1

(
pT
i (tl)ai − uT

i (tl)Gipi(tl)
)2

+

γ1κ(W1,W2)− 〈M,W〉,
and M indicates the dual variable associated with the constraint W �
0. In accordance with the block structure of W in (P5), we define

M1
..= [M ]11, M2

..= [M ]12, M3
..= [M ]22, and M4

..= [M ]21. The

optimal solution of (P5) must

(i) null the sub-gradients

∇aiL(Gi,ai,W1,W2,M) =

2

L∑
l=1

(
pT
i (tl)ai − uT

i (tl)Gipi(tl)
)
pi(tl) (28)

∇GiL(Gi,ai,W1,W2,M) =

− 2

L∑
l=1

(
pT
i (tl)ai − uT

i (tl)Gipi(tl)
)
ui(tl)p

T
i (tl)

−M2 −MT
4 (29)

∇W1L(Gi,ai,W1,W2,M) =
γ1
2
I−M1 (30)

∇W2L(Gi,ai,W1,W2,M) =
γ1
2
I−M3 (31)

and also satisfy

(ii) the complementary slackness condition 〈M,W〉 = 0;

(iii) primal feasibility W � 0;

(iv) dual feasibility M � 0.

Consider the stationary points of (P3), and choose the candidate

primal variables ãi
..= āi, G̃i

..= λ̄ib̄
T
i , W̃1

..= λ̄iλ̄
T
i +

γ3
γ1

diag(λ̄i),

W̃2
..= b̄ib̄

T
i + γ2

γ1
diag(b̄i); and the dual variables M̃1

..= γ1
2
I,

M̃3
..= γ1

2
I, M̃2

..= −∑L
l=1 Ωl(āi, b̄i, λ̄i)ui(tl)p

T
i (tl), and

M̃4
..= M̃T

2 . Then, condition (i) holds because the sub-gradients

(28)–(31) are zero when substituting the introduced primal and dual

variables. The requirement (ii) is also true since

〈M̃,W̃〉 = 〈M̃1,W̃1〉+ 〈M̃3,W̃2〉+ 2〈M̃2, G̃i〉
=

γ1
2

Tr

(
λ̄iλ̄

T
i +

γ3
γ1

diag(λ̄i)

)
+

γ1
2

Tr

(
b̄ib̄

T
i +

γ2
γ1

diag(b̄i)

)

− 2Tr

(
L∑

l=1

Ωl(āi, b̄i, λ̄i)p
T
i (tl)b̄iu

T
i (tl)λ̄i

)

=
1

2
Tr

(
γ1λ̄iλ̄

T
i + γ3 diag(λ̄i)

)
+

1

2
Tr

(
γ1b̄ib̄

T
i + γ2 diag(b̄i)

)
− Tr

(
γ1λ̄iλ̄

T
i + γ3 diag(λ̄i)

)
= 0,

where the last equality follows from (25). Moreover, (iii) is confirmed

similar to (27). In order to meet the last criterion (iv), according to a

Schur complement argument [40], it is sufficient to invoke ‖M̃2‖ ≤
γ1/2.

Consequently, by choosing the proposed candidates that have been

proved to be optimal, one can easily verify (P5) coincides with (P3).

This completes the proof.
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